메뉴 건너뛰기




Volumn 29, Issue 15, 2015, Pages 1605-1617

miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4

Author keywords

Differentiation; miR 431; Muscle aging; Myoblast; Regeneration; SMAD4

Indexed keywords

MESSENGER RNA; MICRORNA; MICRORNA 431; SMAD4 PROTEIN; TRANSFORMING GROWTH FACTOR BETA; UNCLASSIFIED DRUG; 3' UNTRANSLATED REGION; MIRN431 MICRORNA, HUMAN; MIRN431 MICRORNA, MOUSE; PROTEIN BINDING;

EID: 84938897966     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.263574.115     Document Type: Article
Times cited : (91)

References (52)
  • 1
    • 4644309196 scopus 로고    scopus 로고
    • The functions of animal microRNAs
    • Ambros V. 2004. The functions of animal microRNAs. Nature 431: 350–355
    • (2004) Nature , vol.431 , pp. 350-355
    • Ambros, V.1
  • 2
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 3
    • 84896130272 scopus 로고    scopus 로고
    • P38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice
    • Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB. 2014. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20: 265–271
    • (2014) Nat Med , vol.20 , pp. 265-271
    • Bernet, J.D.1    Doles, J.D.2    Hall, J.K.3    Kelly Tanaka, K.4    Carter, T.A.5    Olwin, B.B.6
  • 4
    • 27844595300 scopus 로고    scopus 로고
    • Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy
    • Brack AS, Bildsoe H, Hughes SM. 2005. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 118: 4813–4821
    • (2005) J Cell Sci , vol.118 , pp. 4813-4821
    • Brack, A.S.1    Bildsoe, H.2    Hughes, S.M.3
  • 5
    • 34248677845 scopus 로고    scopus 로고
    • MicroRNAs in skeletal and cardiac muscle development
    • Callis TE, Chen JF, Wang DZ. 2007. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol 26: 219–225
    • (2007) DNA Cell Biol , vol.26 , pp. 219-225
    • Callis, T.E.1    Chen, J.F.2    Wang, D.Z.3
  • 6
    • 47949097215 scopus 로고    scopus 로고
    • Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells
    • Carlson ME, Hsu M, Conboy IM. 2008. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454: 528–532
    • (2008) Nature , vol.454 , pp. 528-532
    • Carlson, M.E.1    Hsu, M.2    Conboy, I.M.3
  • 8
    • 0347989458 scopus 로고    scopus 로고
    • Cellular and molecular regulation of muscle regeneration
    • Charge SB, Rudnicki MA. 2004. Cellular and molecular regulation of muscle regeneration. Physiol Rev 84: 209–238
    • (2004) Physiol Rev , vol.84 , pp. 209-238
    • Charge, S.B.1    Rudnicki, M.A.2
  • 11
    • 84862860608 scopus 로고    scopus 로고
    • Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches
    • Conboy IM, Rando TA. 2012. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle 11: 2260–2267
    • (2012) Cell Cycle , vol.11 , pp. 2260-2267
    • Conboy, I.M.1    Rando, T.A.2
  • 13
    • 84867170366 scopus 로고    scopus 로고
    • MiR-26a is required for skeletal muscle differentiation and regeneration in mice
    • Dey BK, Gagan J, Yan Z, Dutta A. 2012. miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev 26: 2180–2191
    • (2012) Genes Dev , vol.26 , pp. 2180-2191
    • Dey, B.K.1    Gagan, J.2    Yan, Z.3    Dutta, A.4
  • 14
    • 84896812260 scopus 로고    scopus 로고
    • The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration
    • Dey BK, Pfeifer K, Dutta A. 2014. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28: 491–501
    • (2014) Genes Dev , vol.28 , pp. 491-501
    • Dey, B.K.1    Pfeifer, K.2    Dutta, A.3
  • 16
    • 0025998579 scopus 로고
    • A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women
    • Frontera WR, Hughes VA, Lutz KJ, Evans WJ. 1991. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol 71: 644–650
    • (1991) J Appl Physiol , vol.71 , pp. 644-650
    • Frontera, W.R.1    Hughes, V.A.2    Lutz, K.J.3    Evans, W.J.4
  • 19
    • 47349116339 scopus 로고    scopus 로고
    • Stem cell review series: Aging of the skeletal muscle stem cell niche
    • Gopinath SD, Rando TA. 2008. Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7: 590–598
    • (2008) Aging Cell , vol.7 , pp. 590-598
    • Gopinath, S.D.1    Rando, T.A.2
  • 22
    • 84903516418 scopus 로고    scopus 로고
    • MicroRNA-146b promotes myogenic differentiation and modulates multiple gene targets in muscle cells
    • Khanna N, Ge Y, Chen J. 2014. MicroRNA-146b promotes myogenic differentiation and modulates multiple gene targets in muscle cells. PLoS One 9: e100657
    • (2014) Plos One , vol.9
    • Khanna, N.1    Ge, Y.2    Chen, J.3
  • 23
    • 77951202525 scopus 로고    scopus 로고
    • Direct inhibition of Pumilo activity by Bam and Bgcn in Drosophila germ line stem cell differentiation
    • Kim JY, Lee YC, Kim C. 2010. Direct inhibition of Pumilo activity by Bam and Bgcn in Drosophila germ line stem cell differentiation. J Biol Chem 285: 4741–4746
    • (2010) J Biol Chem , vol.285 , pp. 4741-4746
    • Kim, J.Y.1    Lee, Y.C.2    Kim, C.3
  • 28
    • 0035890328 scopus 로고    scopus 로고
    • TGF-β inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3
    • Liu D, Black BL, Derynck R. 2001. TGF-β inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 15: 2950–2966
    • (2001) Genes Dev , vol.15 , pp. 2950-2966
    • Liu, D.1    Black, B.L.2    Derynck, R.3
  • 29
    • 2342514242 scopus 로고    scopus 로고
    • TGF-β-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation
    • Liu D, Kang JS, Derynck R. 2004. TGF-β-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation. EMBO J 23: 1557–1566
    • (2004) EMBO J , vol.23 , pp. 1557-1566
    • Liu, D.1    Kang, J.S.2    Derynck, R.3
  • 31
    • 0026725670 scopus 로고
    • Repression of myogenin function by TGF-β1 is targeted at the basic helix-loop-helix motif and is independent of E2A products
    • Martin JF, Li L, Olson EN. 1992. Repression of myogenin function by TGF-β1 is targeted at the basic helix-loop-helix motif and is independent of E2A products. J Biol Chem 267: 10956–10960
    • (1992) J Biol Chem , vol.267 , pp. 10956-10960
    • Martin, J.F.1    Li, L.2    Olson, E.N.3
  • 32
    • 84866742560 scopus 로고    scopus 로고
    • TGFβ signalling in context
    • Massague J. 2012. TGFβ signalling in context. Nat Rev Mol Cell Biol 13: 616–630
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 616-630
    • Massague, J.1
  • 33
    • 0011899697 scopus 로고
    • Type β transforming growth factor is an inhibitor of myogenic differentiation
    • Massague J, Cheifetz S, Endo T, Nadal-Ginard B. 1986. Type β transforming growth factor is an inhibitor of myogenic differentiation. Proc Natl Acad Sci 83: 8206–8210
    • (1986) Proc Natl Acad Sci , vol.83 , pp. 8206-8210
    • Massague, J.1    Cheifetz, S.2    Endo, T.3    Nadal-Ginard, B.4
  • 34
    • 79959935009 scopus 로고    scopus 로고
    • ThemyomiR network in skeletal muscle plasticity
    • McCarthy JJ. 2011. ThemyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev 39: 150–154
    • (2011) Exerc Sport Sci Rev , vol.39 , pp. 150-154
    • McCarthy, J.J.1
  • 35
    • 33846153786 scopus 로고    scopus 로고
    • MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy
    • McCarthy JJ, Esser KA. 2007. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102: 306–313
    • (2007) J Appl Physiol , vol.102 , pp. 306-313
    • McCarthy, J.J.1    Esser, K.A.2
  • 36
    • 72949109543 scopus 로고    scopus 로고
    • Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy
    • McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE. 2009. Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics 39: 219–226
    • (2009) Physiol Genomics , vol.39 , pp. 219-226
    • McCarthy, J.J.1    Esser, K.A.2    Peterson, C.A.3    Dupont-Versteegden, E.E.4
  • 37
    • 0031010050 scopus 로고    scopus 로고
    • Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member
    • McPherron AC, Lawler AM, Lee SJ. 1997. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387: 83–90
    • (1997) Nature , vol.387 , pp. 83-90
    • McPherron, A.C.1    Lawler, A.M.2    Lee, S.J.3
  • 38
    • 20444439172 scopus 로고    scopus 로고
    • Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases
    • Moren A, Imamura T, Miyazono K, Heldin CH, Moustakas A. 2005. Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem 280: 22115–22123
    • (2005) J Biol Chem , vol.280 , pp. 22115-22123
    • Moren, A.1    Imamura, T.2    Miyazono, K.3    Heldin, C.H.4    Moustakas, A.5
  • 39
    • 77956248079 scopus 로고    scopus 로고
    • Sarcopenia: Characteristics, mechanisms and functional significance
    • Narici MV, Maffulli N. 2010. Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95: 139–159
    • (2010) Br Med Bull , vol.95 , pp. 139-159
    • Narici, M.V.1    Maffulli, N.2
  • 41
    • 0028264320 scopus 로고
    • Primary mousemyoblast purification, characterization, and transplantation for cell-mediated gene therapy
    • Rando TA, Blau HM. 1994. Primary mousemyoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125: 1275–1287
    • (1994) J Cell Biol , vol.125 , pp. 1275-1287
    • Rando, T.A.1    Blau, H.M.2
  • 42
    • 0033952368 scopus 로고    scopus 로고
    • The molecular regulation of myogenesis
    • Sabourin LA, Rudnicki MA. 2000. The molecular regulation of myogenesis. Clin Genet 57: 16–25
    • (2000) Clin Genet , vol.57 , pp. 16-25
    • Sabourin, L.A.1    Rudnicki, M.A.2
  • 43
    • 24344497824 scopus 로고    scopus 로고
    • Mechanisms underlying the transcriptional regulation of skeletal myogenesis
    • Sartorelli V, Caretti G. 2005. Mechanisms underlying the transcriptional regulation of skeletal myogenesis. Curr Opin Genet Dev 15: 528–535
    • (2005) Curr Opin Genet Dev , vol.15 , pp. 528-535
    • Sartorelli, V.1    Caretti, G.2
  • 44
    • 0020306184 scopus 로고
    • Skeletal muscle satellite cells: Changes in proliferation potential as a function of age
    • Schultz E, Lipton BH. 1982. Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech Ageing Dev 20: 377–383
    • (1982) Mech Ageing Dev , vol.20 , pp. 377-383
    • Schultz, E.1    Lipton, B.H.2
  • 45
    • 33646264523 scopus 로고    scopus 로고
    • Satellite-cell pool size does matter: Defining the myogenic potency of aging skeletal muscle
    • Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z. 2006. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294: 50–66
    • (2006) Dev Biol , vol.294 , pp. 50-66
    • Shefer, G.1    Van De Mark, D.P.2    Richardson, J.B.3    Yablonka-Reuveni, Z.4
  • 48
    • 77954385461 scopus 로고    scopus 로고
    • MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease
    • Townley-Tilson WH, Callis TE, Wang D. 2010. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol 42: 1252–1255
    • (2010) Int J Biochem Cell Biol , vol.42 , pp. 1252-1255
    • Townley-Tilson, W.H.1    Callis, T.E.2    Wang, D.3
  • 49
    • 24144489118 scopus 로고    scopus 로고
    • Cellular and molecular signatures of muscle regeneration: Current concepts and controversies in adult myogenesis
    • Wagers AJ, Conboy IM. 2005. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122: 659–667
    • (2005) Cell , vol.122 , pp. 659-667
    • Wagers, A.J.1    Conboy, I.M.2
  • 50
    • 84856096512 scopus 로고    scopus 로고
    • Satellite cells, the engines of muscle repair
    • Wang YX, Rudnicki MA. 2012. Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 13: 127–133
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 127-133
    • Wang, Y.X.1    Rudnicki, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.