메뉴 건너뛰기




Volumn 30, Issue 8, 2015, Pages 858-881

A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS

Author keywords

CHAID DT; GIS; remote sensing; Tripoli; urban expansion

Indexed keywords

CELLULAR AUTOMATON; GIS; MARKOV CHAIN; REMOTE SENSING; SATELLITE IMAGERY; URBAN DEVELOPMENT; URBAN GROWTH;

EID: 84938416864     PISSN: 10106049     EISSN: None     Source Type: Journal    
DOI: 10.1080/10106049.2014.997308     Document Type: Article
Times cited : (68)

References (74)
  • 1
    • 84925281436 scopus 로고    scopus 로고
    • GIS-based sustainable city compactness assessment using integration of MCDM, Bayes theorem and RADAR technology
    • S.Abdullahi, B.Pradhan, M.N.Jebur. 2014. GIS-based sustainable city compactness assessment using integration of MCDM, Bayes theorem and RADAR technology. Geocarto Int. 1–23. Available from: http://dx.doi.org/10.1080/10106049.2014.91196710.1080/10106049.2014.911967
    • (2014) Geocarto Int , pp. 1-23
    • Abdullahi, S.1    Pradhan, B.2    Jebur, M.N.3
  • 2
    • 84881662834 scopus 로고    scopus 로고
    • Modelling urban growth evolution and land-use changes using GIS based cellular automata and sleuth models: the case of Sana’a metropolitan city, Yemen
    • M.Al-Shalabi, L.Billa, B.Pradhan, S.Mansor, A.A.Al-Sharif. 2012. Modelling urban growth evolution and land-use changes using GIS based cellular automata and sleuth models: the case of Sana’a metropolitan city, Yemen. Environ Earth Sci. 70:425–437.
    • (2012) Environ Earth Sci , vol.70 , pp. 425-437
    • Al-Shalabi, M.1    Billa, L.2    Pradhan, B.3    Mansor, S.4    Al-Sharif, A.A.5
  • 3
    • 84896389614 scopus 로고    scopus 로고
    • Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model
    • A.A.Al-sharif, B.Pradhan. 2014a. Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. J Indian Soc Remote Sens. 42:149–163.
    • (2014) J Indian Soc Remote Sens , pp. 149-163
    • Al-sharif, A.A.1    Pradhan, B.2
  • 4
    • 84907232745 scopus 로고    scopus 로고
    • Monitoring and predicting land use change in Tripoli metropolitan city using an integrated markov chain and cellular automata models in GIS
    • A.A.Al-Sharif, B.Pradhan. 2014b. Monitoring and predicting land use change in Tripoli metropolitan city using an integrated markov chain and cellular automata models in GIS. Arab J Geosci. 7:4291–4301.
    • (2014) Arab J Geosci , pp. 4291-4301
    • Al-Sharif, A.A.1    Pradhan, B.2
  • 5
    • 84884389081 scopus 로고    scopus 로고
    • Spatio-temporal analysis of urban and population growths in Tripoli using remotely sensed data and GIS
    • A.A.Al-Sharif, B.Pradhan, H.Z.M.Shafri, S.Mansor. 2013. Spatio-temporal analysis of urban and population growths in Tripoli using remotely sensed data and GIS. Indian J Sci Technol. 6:5134–5142.
    • (2013) Indian J Sci Technol , vol.6 , pp. 5134-5142
    • Al-Sharif, A.A.1    Pradhan, B.2    Shafri, H.Z.M.3    Mansor, S.4
  • 6
    • 84911812068 scopus 로고    scopus 로고
    • A novel ensemble decision tree-based chi-squared automatic interaction detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping
    • O.F.Althuwaynee, B.Pradhan, H.-J.Park, J.H.Lee. 2014. A novel ensemble decision tree-based chi-squared automatic interaction detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides. 11:1063–1078.
    • (2014) Landslides , pp. 1063-1078
    • Althuwaynee, O.F.1    Pradhan, B.2    Park, H.-J.3    Lee, J.H.4
  • 7
    • 84859417353 scopus 로고    scopus 로고
    • Tracking dynamic land-use change using spatially explicit Markov chain based on cellular automata: the case of Tehran
    • J.J.Arsanjani, W.Kainz, A.J.Mousivand. 2011. Tracking dynamic land-use change using spatially explicit Markov chain based on cellular automata: the case of Tehran. Int J Image Data Fusion. 2:329–345.10.1080/19479832.2011.605397
    • (2011) Int J Image Data Fusion , vol.2 , pp. 329-345
    • Arsanjani, J.J.1    Kainz, W.2    Mousivand, A.J.3
  • 8
    • 48749139034 scopus 로고
    • Clarification of the use of chi-square and likelihood functions in fits to histograms
    • S.Baker, R.D.Cousins. 1984. Clarification of the use of chi-square and likelihood functions in fits to histograms. Nucl Instrum Methods Phys Res. 221:437–442.10.1016/0167-5087(84)90016-4
    • (1984) Nucl Instrum Methods Phys Res , vol.221 , pp. 437-442
    • Baker, S.1    Cousins, R.D.2
  • 9
    • 0041851516 scopus 로고    scopus 로고
    • Urban sustainability in developing countries’ megacities: modelling and predicting future urban growth in Lagos
    • J.I.Barredo, L.Demicheli. 2003. Urban sustainability in developing countries’ megacities: modelling and predicting future urban growth in Lagos. Cities. 20:297–310.10.1016/S0264-2751(03)00047-7
    • (2003) Cities , vol.20 , pp. 297-310
    • Barredo, J.I.1    Demicheli, L.2
  • 10
    • 84903769454 scopus 로고    scopus 로고
    • Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale
    • R.M.Basse, H.Omrani, O.Charif, P.Gerber, K.Bódis. 2014. Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl Geogr. 53:160–171.10.1016/j.apgeog.2014.06.016
    • (2014) Appl Geogr , vol.53 , pp. 160-171
    • Basse, R.M.1    Omrani, H.2    Charif, O.3    Gerber, P.4    Bódis, K.5
  • 11
    • 61449134138 scopus 로고    scopus 로고
    • Urban expansion in centre county, Pennsylvania: spatial dynamics and landscape transformations
    • N.Batisani, B.Yarnal. 2009. Urban expansion in centre county, Pennsylvania: spatial dynamics and landscape transformations. Appl Geogr. 29:235–249.10.1016/j.apgeog.2008.08.007
    • (2009) Appl Geogr , vol.29 , pp. 235-249
    • Batisani, N.1    Yarnal, B.2
  • 16
    • 35848933027 scopus 로고    scopus 로고
    • Soil and bedrock distribution estimated from gully form and frequency: a GIS-based decision-tree model for Lebanon
    • R.Bou Kheir, J.Chorowicz, C.Abdallah, D.Dhont. 2008. Soil and bedrock distribution estimated from gully form and frequency: a GIS-based decision-tree model for Lebanon. Geomorphology. 93:482–492.10.1016/j.geomorph.2007.03.010
    • (2008) Geomorphology , vol.93 , pp. 482-492
    • Bou Kheir, R.1    Chorowicz, J.2    Abdallah, C.3    Dhont, D.4
  • 17
    • 74249083880 scopus 로고    scopus 로고
    • Spatial soil zinc content distribution from terrain parameters: a GIS-based decision-tree model in Lebanon
    • R.Bou Kheir, M.H.Greve, C.Abdallah, T.Dalgaard. 2010. Spatial soil zinc content distribution from terrain parameters: a GIS-based decision-tree model in Lebanon. Environ pollut. 158:520–528.10.1016/j.envpol.2009.08.009
    • (2010) Environ pollut , vol.158 , pp. 520-528
    • Bou Kheir, R.1    Greve, M.H.2    Abdallah, C.3    Dalgaard, T.4
  • 18
    • 70349436811 scopus 로고    scopus 로고
    • Applying data mining to explore the risk factors of parenting stress
    • H.-Y.Chen, T.-W.Hou, C.-H.Chuang. 2010. Applying data mining to explore the risk factors of parenting stress. Expert Syst Appl. 37:598–601.10.1016/j.eswa.2009.05.028
    • (2010) Expert Syst Appl , vol.37 , pp. 598-601
    • Chen, H.-Y.1    Hou, T.-W.2    Chuang, C.-H.3
  • 19
    • 81155152273 scopus 로고    scopus 로고
    • Decision tree approach for classification and dimensionality reduction of electronic nose data
    • J.H.Cho, P.U.Kurup. 2011. Decision tree approach for classification and dimensionality reduction of electronic nose data. Sens Actuators B Chem. 160:542–548.10.1016/j.snb.2011.08.027
    • (2011) Sens Actuators B Chem , vol.160 , pp. 542-548
    • Cho, J.H.1    Kurup, P.U.2
  • 20
    • 0742288013 scopus 로고    scopus 로고
    • Validation of spatial prediction models for landslide hazard mapping
    • C.-J.F.Chung, A.G.Fabbri. 2003. Validation of spatial prediction models for landslide hazard mapping. Nat Hazards. 30:451–472.10.1023/B:NHAZ.0000007172.62651.2b
    • (2003) Nat Hazards , vol.30 , pp. 451-472
    • Chung, C.-J.F.1    Fabbri, A.G.2
  • 21
    • 0000750406 scopus 로고    scopus 로고
    • A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area
    • K.Clarke, S.Hoppen, L.Gaydos. 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plann B. 24:247–261.10.1068/b240247
    • (1997) Environ Plann B , vol.24 , pp. 247-261
    • Clarke, K.1    Hoppen, S.2    Gaydos, L.3
  • 22
    • 35349000736 scopus 로고    scopus 로고
    • Markov models of land cover dynamics in a southern Great Plains grassland region
    • B.R.Coppedge, D.M.Engle, S.D.Fuhlendorf. 2007. Markov models of land cover dynamics in a southern Great Plains grassland region. Landsc Ecol. 22:1383–1393.10.1007/s10980-007-9116-4
    • (2007) Landsc Ecol , vol.22 , pp. 1383-1393
    • Coppedge, B.R.1    Engle, D.M.2    Fuhlendorf, S.D.3
  • 23
    • 84859054036 scopus 로고    scopus 로고
    • Spatio-temporal urban growth modeling of Jaipur, India
    • P.N.Dadhich, S.Hanaoka. 2011. Spatio-temporal urban growth modeling of Jaipur, India. J Urban Technol. 18:45–65.10.1080/10630732.2011.615567
    • (2011) J Urban Technol , vol.18 , pp. 45-65
    • Dadhich, P.N.1    Hanaoka, S.2
  • 24
    • 84055175964 scopus 로고    scopus 로고
    • Decision trees in ecological modelling
    • Jopp F., Reuter H., Breckling B., (eds), Berlin: Springer
    • M.Debeljak, S.Džeroski. 2011. Decision trees in ecological modelling. In: F.Jopp, H.Reuter, B.Breckling, editors. Modelling complex ecological dynamics. Berlin: Springer; p. 197–209.
    • (2011) Modelling complex ecological dynamics , pp. 197-209
    • Debeljak, M.1    Džeroski, S.2
  • 25
    • 84896405706 scopus 로고    scopus 로고
    • Modelling and predicting future urban expansion of Lagos, Nigeria from remote sensing data using logistic regression and gis
    • A.Eyoh, D.N.Olayinka, P.Nwilo, O.Okwuashi, M.Isong, D.Udoudo. 2012. Modelling and predicting future urban expansion of Lagos, Nigeria from remote sensing data using logistic regression and gis. Int J Appl Sci Technol. 2:116–124.
    • (2012) Int J Appl Sci Technol , vol.2 , pp. 116-124
    • Eyoh, A.1    Olayinka, D.N.2    Nwilo, P.3    Okwuashi, O.4    Isong, M.5    Udoudo, D.6
  • 26
    • 84920696632 scopus 로고    scopus 로고
    • Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata—Markov modelling
    • W.Gong, L.Yuan, W.Fan, P.Stott. 2015. Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata—Markov modelling. Int J Appl Earth Obs Geoinf. 34:207–216.10.1016/j.jag.2014.07.005
    • (2015) Int J Appl Earth Obs Geoinf , vol.34 , pp. 207-216
    • Gong, W.1    Yuan, L.2    Fan, W.3    Stott, P.4
  • 27
    • 0032440151 scopus 로고    scopus 로고
    • Urban development and urban design: deciding the parameters
    • N.Hamdi, R.Goethert. 1998. Urban development and urban design: deciding the parameters. Urban Des Int. 3:23–31.10.1057/udi.1998.4
    • (1998) Urban Des Int , vol.3 , pp. 23-31
    • Hamdi, N.1    Goethert, R.2
  • 28
    • 33751167046 scopus 로고    scopus 로고
    • Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China
    • C.He, N.Okada, Q.Zhang, P.Shi, J.Zhang. 2006. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Appl Geogr. 26:323–345.10.1016/j.apgeog.2006.09.006
    • (2006) Appl Geogr , vol.26 , pp. 323-345
    • He, C.1    Okada, N.2    Zhang, Q.3    Shi, P.4    Zhang, J.5
  • 29
    • 36148984256 scopus 로고    scopus 로고
    • Modeling urban growth in Atlanta using logistic regression
    • Z.Hu, C.Lo. 2007. Modeling urban growth in Atlanta using logistic regression. Comput Environ Urban Syst. 31:667–688.10.1016/j.compenvurbsys.2006.11.001
    • (2007) Comput Environ Urban Syst , vol.31 , pp. 667-688
    • Hu, Z.1    Lo, C.2
  • 31
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • G.V.Kass. 1980. An exploratory technique for investigating large quantities of categorical data. Appl Stat. 29:119–127.10.2307/2986296
    • (1980) Appl Stat , vol.29 , pp. 119-127
    • Kass, G.V.1
  • 32
    • 33750716482 scopus 로고    scopus 로고
    • Extraction of spatial rules using a decision tree method: A case study in urban growth modelinged
    • 10th International Conference, KES 2006, Bournemouth (UK): Proceedings, Part I, Springer
    • J.Kim, Y.Kang, S.Hong, S.Park. 2006. Extraction of spatial rules using a decision tree method: A case study in urban growth modelinged. In: Knowledge-based intelligent information and engineering systems, 10th International Conference, KES 2006; 2006 Oct 9–11; Bournemouth (UK); Proceedings, Part I. Springer; p. 203–211.
    • (2006) Knowledge-based intelligent information and engineering systems , pp. 203-211
    • Kim, J.1    Kang, Y.2    Hong, S.3    Park, S.4
  • 33
    • 84929133131 scopus 로고    scopus 로고
    • An analysis of changes in the urban landscape composition and configuration in the Sancaktepe District of Istanbul Metropolitan City, Turkey using landscape metrics and satellite data
    • P.Kowe, E.Pedzisai, W.Gumindoga, D.T.Rwasoka. 2014. An analysis of changes in the urban landscape composition and configuration in the Sancaktepe District of Istanbul Metropolitan City, Turkey using landscape metrics and satellite data. Geocarto Int. 1–14. Available from: http://dx.doi.org/10.1080/10106049.2014.90563810.1080/10106049.2014.905638
    • (2014) Geocarto Int , pp. 1-14
    • Kowe, P.1    Pedzisai, E.2    Gumindoga, W.3    Rwasoka, D.T.4
  • 34
    • 84878199054 scopus 로고    scopus 로고
    • Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines
    • S.Lee, I.Park. 2013. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. J Environ Manage. 127:166–176.10.1016/j.jenvman.2013.04.010
    • (2013) J Environ Manage , vol.127 , pp. 166-176
    • Lee, S.1    Park, I.2
  • 35
    • 84903893671 scopus 로고    scopus 로고
    • Modeling urban vertical growth using cellular automata Guangzhou as a case study
    • J.Lin, B.Huang, M.Chen, Z.Huang. 2014. Modeling urban vertical growth using cellular automata Guangzhou as a case study. Appl Geogr. 53:172–186.10.1016/j.apgeog.2014.06.007
    • (2014) Appl Geogr , vol.53 , pp. 172-186
    • Lin, J.1    Huang, B.2    Chen, M.3    Huang, Z.4
  • 36
    • 84881249149 scopus 로고    scopus 로고
    • Modelling spatial patterns of urban growth in Africa
    • C.Linard, A.J.Tatem, M.Gilbert. 2013. Modelling spatial patterns of urban growth in Africa. Appl Geogr. 44:23–32.10.1016/j.apgeog.2013.07.009
    • (2013) Appl Geogr , vol.44 , pp. 23-32
    • Linard, C.1    Tatem, A.J.2    Gilbert, M.3
  • 37
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • W.-Y.Loh, Y.-S.Shih. 1997. Split selection methods for classification trees. Stat Sin. 7:815–840.
    • (1997) Stat Sin , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 38
    • 0036077910 scopus 로고    scopus 로고
    • Geographical information systems: will developments in urban remote sensing and GIS lead to ‘better’ urban geography?
    • P.A.Longley. 2002. Geographical information systems: will developments in urban remote sensing and GIS lead to ‘better’ urban geography? Progr Hum Geogr. 26:231–239.10.1191/0309132502ph366pr
    • (2002) Progr Hum Geogr , vol.26 , pp. 231-239
    • Longley, P.A.1
  • 39
    • 78649370964 scopus 로고    scopus 로고
    • An artificial neural network based approach for urban growth zonation in Dehradun city, India
    • S.Maithani, M.K.Arora, R.K.Jain. 2010. An artificial neural network based approach for urban growth zonation in Dehradun city, India. Geocarto Int. 25:663–681.10.1080/10106049.2010.524313
    • (2010) Geocarto Int , vol.25 , pp. 663-681
    • Maithani, S.1    Arora, M.K.2    Jain, R.K.3
  • 40
    • 0034790674 scopus 로고    scopus 로고
    • Managing our urban future: the role of remote sensing and geographic information systems
    • I.Masser. 2001. Managing our urban future: the role of remote sensing and geographic information systems. Habitat Int. 25:503–512.10.1016/S0197-3975(01)00021-2
    • (2001) Habitat Int , vol.25 , pp. 503-512
    • Masser, I.1
  • 41
    • 78650009217 scopus 로고    scopus 로고
    • A cellular automata model of land cover change to integrate urban growth with open space conservation
    • D.Mitsova, W.Shuster, X.Wang. 2011. A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plann. 99:141–153.10.1016/j.landurbplan.2010.10.001
    • (2011) Landsc Urban Plann , vol.99 , pp. 141-153
    • Mitsova, D.1    Shuster, W.2    Wang, X.3
  • 42
    • 0027975167 scopus 로고
    • A markov model of land-use change dynamics in the Niagara region, Ontario, Canada
    • M.R.Muller, J.Middleton. 1994. A markov model of land-use change dynamics in the Niagara region, Ontario, Canada. Landsc Ecol. 9:151–157.
    • (1994) Landsc Ecol , vol.9 , pp. 151-157
    • Muller, M.R.1    Middleton, J.2
  • 46
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • M.Pal, P.M.Mather. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ. 86:554–565.10.1016/S0034-4257(03)00132-9
    • (2003) Remote Sens Environ , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 47
    • 84875649415 scopus 로고    scopus 로고
    • Modeling the dynamics of urban development project: Focusing on self-sufficient city development
    • M.Park, Y.Kim, H.-S.Lee, S.Han, S.Hwang, M.J.Choi. 2013. Modeling the dynamics of urban development project: Focusing on self-sufficient city development. Math Comput Model. 57:2082–2093.10.1016/j.mcm.2011.05.058
    • (2013) Math Comput Model , vol.57 , pp. 2082-2093
    • Park, M.1    Kim, Y.2    Lee, H.-S.3    Han, S.4    Hwang, S.5    Choi, M.J.6
  • 48
    • 84655174948 scopus 로고    scopus 로고
    • Mapping urban growth probability in South Korea: comparison of frequency ratio, analytic hierarchy process, and logistic regression models and use of the environmental conservation value assessment
    • S.Park, S.Jeon, C.Choi. 2012. Mapping urban growth probability in South Korea: comparison of frequency ratio, analytic hierarchy process, and logistic regression models and use of the environmental conservation value assessment. Landsc Ecol Eng. 8:17–31.10.1007/s11355-010-0137-9
    • (2012) Landsc Ecol Eng , vol.8 , pp. 17-31
    • Park, S.1    Jeon, S.2    Choi, C.3
  • 49
    • 33645525618 scopus 로고
    • Urban land use mapping: a case study of Ahmedabad city and its environs
    • S.Pathan, V.Shukla, R.Patel, B.Patel, K.Mehta. 1991. Urban land use mapping: a case study of Ahmedabad city and its environs. J Indian Soc Remote Sens. 19:95–112.10.1007/BF03008125
    • (1991) J Indian Soc Remote Sens , vol.19 , pp. 95-112
    • Pathan, S.1    Shukla, V.2    Patel, R.3    Patel, B.4    Mehta, K.5
  • 50
    • 33746644573 scopus 로고    scopus 로고
    • Monitoring and modeling cropland loss in rapidly growing urban and depopulating rural counties using remotely sensed data and GIS
    • A.N.Petrov, R.Sugumaran. 2005. Monitoring and modeling cropland loss in rapidly growing urban and depopulating rural counties using remotely sensed data and GIS. Geocarto Int. 20:45–52.10.1080/10106040508542363
    • (2005) Geocarto Int , vol.20 , pp. 45-52
    • Petrov, A.N.1    Sugumaran, R.2
  • 51
    • 0036837310 scopus 로고    scopus 로고
    • Using neural networks and GIS to forecast land use changes: a Land Transformation Model
    • B.C.Pijanowski, D.G.Brown, B.A.Shellito, G.A.Manik. 2002. Using neural networks and GIS to forecast land use changes: a Land Transformation Model. Comput Environ Urban Syst. 26:553–575.10.1016/S0198-9715(01)00015-1
    • (2002) Comput Environ Urban Syst , vol.26 , pp. 553-575
    • Pijanowski, B.C.1    Brown, D.G.2    Shellito, B.A.3    Manik, G.A.4
  • 52
    • 0343724635 scopus 로고    scopus 로고
    • Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA
    • R.G.PontiusJr, L.C.Schneider. 2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ. 85:239–248.10.1016/S0167-8809(01)00187-6
    • (2001) Agric Ecosyst Environ , vol.85 , pp. 239-248
    • Pontius, R.G.1    Schneider, L.C.2
  • 53
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J.R.Quinlan. 1986. Induction of decision trees. Mach Learn. 1:81–106.
    • (1986) Mach Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 55
    • 84867257287 scopus 로고    scopus 로고
    • Estimation of variables explaining urbanization concomitant with land-use change: a spatial approach
    • G.Sandhya Kiran, U.B.Joshi. 2013. Estimation of variables explaining urbanization concomitant with land-use change: a spatial approach. Int J Remote Sens. 34:824–847.10.1080/01431161.2012.720738
    • (2013) Int J Remote Sens , vol.34 , pp. 824-847
    • Sandhya Kiran, G.1    Joshi, U.B.2
  • 56
    • 79956085131 scopus 로고    scopus 로고
    • Simulation of land use spatial pattern of towns and villages based on CA–Markov model
    • L.Sang, C.Zhang, J.Yang, D.Zhu, W.Yun. 2011. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math Comput Model. 54:938–943.10.1016/j.mcm.2010.11.019
    • (2011) Math Comput Model , vol.54 , pp. 938-943
    • Sang, L.1    Zhang, C.2    Yang, J.3    Zhu, D.4    Yun, W.5
  • 57
    • 84875577395 scopus 로고    scopus 로고
    • Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model
    • H.Shafizadeh Moghadam, M.Helbich. 2013. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Appl Geogr. 40:140–149.10.1016/j.apgeog.2013.01.009
    • (2013) Appl Geogr , vol.40 , pp. 140-149
    • Shafizadeh Moghadam, H.1    Helbich, M.2
  • 59
    • 77952896703 scopus 로고    scopus 로고
    • Monitoring urban sprawl in Germany: towards a GIS-based measurement and assessment approach
    • S.Siedentop, S.Fina. 2010. Monitoring urban sprawl in Germany: towards a GIS-based measurement and assessment approach. J Land Use Sci. 5:73–104.10.1080/1747423X.2010.481075
    • (2010) J Land Use Sci , vol.5 , pp. 73-104
    • Siedentop, S.1    Fina, S.2
  • 60
    • 84870007185 scopus 로고    scopus 로고
    • Mapping and analyzing urban expansion using remotely sensed imagery in Isfahan, Iran
    • A.Soffianian, M.A.Nadoushan, L.Yaghmaei, S.Falahatkar. 2010. Mapping and analyzing urban expansion using remotely sensed imagery in Isfahan, Iran. World Appl Sci J. 9:1370–1378.
    • (2010) World Appl Sci J , vol.9 , pp. 1370-1378
    • Soffianian, A.1    Nadoushan, M.A.2    Yaghmaei, L.3    Falahatkar, S.4
  • 61
    • 79960776018 scopus 로고    scopus 로고
    • Use of geo-spatial information and technologies for analyzing morphological changes in the Greater Visakhapatnam coastal region, east coast of India
    • P.Swarna Latha, K.Nageswara Rao. 2011. Use of geo-spatial information and technologies for analyzing morphological changes in the Greater Visakhapatnam coastal region, east coast of India. Geocarto Int. 26:391–411.10.1080/10106049.2011.586733
    • (2011) Geocarto Int , vol.26 , pp. 391-411
    • Swarna Latha, P.1    Nageswara Rao, K.2
  • 62
    • 53949116999 scopus 로고    scopus 로고
    • Changes in the built vs. non-built environment in a rapidly urbanizing region: a case study of the Greater Toronto Area
    • L.Tole. 2008. Changes in the built vs. non-built environment in a rapidly urbanizing region: a case study of the Greater Toronto Area. Comput Environ Urban Syst. 32:355–364.10.1016/j.compenvurbsys.2008.08.002
    • (2008) Comput Environ Urban Syst , vol.32 , pp. 355-364
    • Tole, L.1
  • 63
    • 84880993935 scopus 로고    scopus 로고
    • Accuracy assessments of land use change simulation based on Markov-cellular automata model
    • S.Wang, X.Zheng, X.Zang. 2012. Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environ Sci. 13:1238–1245.10.1016/j.proenv.2012.01.117
    • (2012) Procedia Environ Sci , vol.13 , pp. 1238-1245
    • Wang, S.1    Zheng, X.2    Zang, X.3
  • 64
    • 0034284892 scopus 로고    scopus 로고
    • High-resolution integrated modelling of the spatial dynamics of urban and regional systems
    • R.White, G.Engelen. 2000. High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comput Environ Urban Syst. 24:383–400.10.1016/S0198-9715(00)00012-0
    • (2000) Comput Environ Urban Syst , vol.24 , pp. 383-400
    • White, R.1    Engelen, G.2
  • 66
    • 84875231575 scopus 로고    scopus 로고
    • Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: the case of fast-growing Hangzhou metropolitan area, China
    • K.-Y.Wu, X.-Y.Ye, Z.-F.Qi, H.Zhang. 2013. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: the case of fast-growing Hangzhou metropolitan area, China. Cities. 31:276–284.10.1016/j.cities.2012.08.003
    • (2013) Cities , vol.31 , pp. 276-284
    • Wu, K.-Y.1    Ye, X.-Y.2    Qi, Z.-F.3    Zhang, H.4
  • 67
    • 22744440977 scopus 로고    scopus 로고
    • Assessments of urban growth in the Tampa Bay watershed using remote sensing data
    • G.Xian, M.Crane. 2005. Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sens Environ. 97:203–215.10.1016/j.rse.2005.04.017
    • (2005) Remote Sens Environ , vol.97 , pp. 203-215
    • Xian, G.1    Crane, M.2
  • 68
    • 84860226539 scopus 로고    scopus 로고
    • A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata
    • X.Yang, X.-Q.Zheng, L.-N.Lv. 2012. A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecol Modell. 233:11–19.10.1016/j.ecolmodel.2012.03.011
    • (2012) Ecol Modell , vol.233 , pp. 11-19
    • Yang, X.1    Zheng, X.-Q.2    Lv, L.-N.3
  • 69
    • 77952663866 scopus 로고    scopus 로고
    • Urban growth monitoring and projection using remote sensing and geographic information systems: a case study in the Twin Cities Metropolitan Area, Minnesota
    • F.Yuan. 2010. Urban growth monitoring and projection using remote sensing and geographic information systems: a case study in the Twin Cities Metropolitan Area, Minnesota. Geocarto Int. 25:213–230.10.1080/10106040903108445
    • (2010) Geocarto Int , vol.25 , pp. 213-230
    • Yuan, F.1
  • 70
    • 84857703010 scopus 로고    scopus 로고
    • Use of fish distribution modelling for river management
    • R.Zarkami, R.Sadeghi, P.Goethals. 2012. Use of fish distribution modelling for river management. Ecol Modell. 230:44–49.10.1016/j.ecolmodel.2012.01.011
    • (2012) Ecol Modell , vol.230 , pp. 44-49
    • Zarkami, R.1    Sadeghi, R.2    Goethals, P.3
  • 71
    • 79952246364 scopus 로고    scopus 로고
    • Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China
    • Q.Zhang, Y.Ban, J.Liu, Y.Hu. 2011. Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Comput Environ Urban Syst. 35:126–139.10.1016/j.compenvurbsys.2010.12.002
    • (2011) Comput Environ Urban Syst , vol.35 , pp. 126-139
    • Zhang, Q.1    Ban, Y.2    Liu, J.3    Hu, Y.4
  • 72
    • 82955249231 scopus 로고    scopus 로고
    • Analysis of acid rain patterns in northeastern China using a decision tree method
    • X.Zhang, H.Jiang, J.Jin, X.Xu, Q.Zhang. 2012. Analysis of acid rain patterns in northeastern China using a decision tree method. Atmos Environ. 46:590–596.10.1016/j.atmosenv.2011.03.004
    • (2012) Atmos Environ , vol.46 , pp. 590-596
    • Zhang, X.1    Jiang, H.2    Jin, J.3    Xu, X.4    Zhang, Q.5
  • 73
    • 84978280995 scopus 로고    scopus 로고
    • Urban dynamics analysis using spatial metrics geosimulation
    • Murayama Y., Thapa R.B., (eds), Berlin: Springer
    • Y.Zhao, Y.Murayama. 2011. Urban dynamics analysis using spatial metrics geosimulation. In: Y.Murayama, R.B.Thapa, editors. Spatial analysis and modeling in geographical transformation process. Berlin: Springer; p. 153–167.
    • (2011) Spatial analysis and modeling in geographical transformation process , pp. 153-167
    • Zhao, Y.1    Murayama, Y.2
  • 74
    • 43049157582 scopus 로고    scopus 로고
    • Comparison of decision tree methods for finding active objects
    • Y.Zhao, Y.Zhang. 2008. Comparison of decision tree methods for finding active objects. Adv Space Res. 41:1955–1959.10.1016/j.asr.2007.07.020
    • (2008) Adv Space Res , vol.41 , pp. 1955-1959
    • Zhao, Y.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.