메뉴 건너뛰기




Volumn 34, Issue 21, 2015, Pages 2941-2957

A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data

Author keywords

Electronic health records; Machine learning; Naive Bayes; Risk prediction; Survival analysis

Indexed keywords

ARTICLE; CALIBRATION; CARDIOVASCULAR RISK; CENSORED NAIVE BAYES MACHINE LEARNING; CLASSIFICATION ALGORITHM; HEALTH CARE SYSTEM; INFORMATION PROCESSING; INTERMETHOD COMPARISON; MACHINE LEARNING; MATHEMATICAL COMPUTING; OUTCOME ASSESSMENT; PREDICTION; PROCESS DEVELOPMENT; PROPORTIONAL HAZARDS MODEL; RISK ASSESSMENT; STATISTICAL DISTRIBUTION; STATISTICAL SIGNIFICANCE; TIME TO EVENT DATA; BAYES THEOREM; BIOMETRY; CARDIOVASCULAR DISEASES; COMPUTER SIMULATION; ELECTRONIC HEALTH RECORD; FACTUAL DATABASE; HUMAN; INTEGRATED HEALTH CARE SYSTEM; LONGITUDINAL STUDY; PROCEDURES; RISK; SPATIOTEMPORAL ANALYSIS; UNITED STATES;

EID: 84938292482     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6526     Document Type: Article
Times cited : (40)

References (44)
  • 2
    • 0034945516 scopus 로고    scopus 로고
    • Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation
    • D'Agostino RB, Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. Journal of the American Medical Association 2001; 286(2):180-187.
    • (2001) Journal of the American Medical Association , vol.286 , Issue.2 , pp. 180-187
    • D'Agostino, R.B.1    Grundy, S.2    Sullivan, L.M.3    Wilson, P.4
  • 3
    • 0004737767 scopus 로고
    • The Framingham study: a prospective study of coronary heart disease
    • Kagan A, Dawber TR, Kannel WB, Revotskie N. The Framingham study: a prospective study of coronary heart disease. Federation proceedings 1962; 21(4 Pt 2):52-57.
    • (1962) Federation proceedings , vol.21 , Issue.4 PART. 2 , pp. 52-57
    • Kagan, A.1    Dawber, T.R.2    Kannel, W.B.3    Revotskie, N.4
  • 7
    • 0018668029 scopus 로고
    • Linear regression with censored data
    • Buckley J, James I. Linear regression with censored data. Biometrika 1979; 66(3):429-436.
    • (1979) Biometrika , vol.66 , Issue.3 , pp. 429-436
    • Buckley, J.1    James, I.2
  • 8
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
    • Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Medical Care 2010; 48(6 Suppl):S106-S113.
    • (2010) Medical Care , vol.48 , Issue.6 , pp. S106-S113
    • Wu, J.1    Roy, J.2    Stewart, W.F.3
  • 9
    • 85044704563 scopus 로고    scopus 로고
    • Comparison of machine learning techniques with classical statistical models in predicting health outcomes
    • Song X, Mitnitski A, Cox J, Rockwood K. Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Medinfo 2004; 11(1):736-740.
    • (2004) Medinfo , vol.11 , Issue.1 , pp. 736-740
    • Song, X.1    Mitnitski, A.2    Cox, J.3    Rockwood, K.4
  • 10
    • 0034566844 scopus 로고    scopus 로고
    • Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression
    • American Medical Informatics Association: Philadelphia
    • Colombet I, Ruelland A, Chatellier G, Gueyffier F, Degoulet P, Jaulent MC. Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression. In Proceedings of the AMIA Symposium. American Medical Informatics Association: Philadelphia, 2000; 156-160.
    • (2000) Proceedings of the AMIA Symposium , pp. 156-160
    • Colombet, I.1    Ruelland, A.2    Chatellier, G.3    Gueyffier, F.4    Degoulet, P.5    Jaulent, M.C.6
  • 12
    • 84929843809 scopus 로고    scopus 로고
    • Learning Bayesian networks by genetic algorithms: a case study in the prediction of survival in malignant skin melanoma
    • Larranaga P, Sierra B, Gallego MJ, Michelena MJ, Picaza JM. Learning Bayesian networks by genetic algorithms: a case study in the prediction of survival in malignant skin melanoma. Artificial Intelligence Medicine 1997; 1211:261-272.
    • (1997) Artificial Intelligence Medicine , vol.1211 , pp. 261-272
    • Larranaga, P.1    Sierra, B.2    Gallego, M.J.3    Michelena, M.J.4    Picaza, J.M.5
  • 13
    • 0344447109 scopus 로고    scopus 로고
    • Predicting survival in malignant skill melanoma using Bayesian networks automatically induced by genetic algorithms: an empirical comparison between different approaches
    • Sierra B, Larranaga P. Predicting survival in malignant skill melanoma using Bayesian networks automatically induced by genetic algorithms: an empirical comparison between different approaches. Artificial Intelligence Medicine 1998; 14(1-2):215-230.
    • (1998) Artificial Intelligence Medicine , vol.14 , Issue.1-2 , pp. 215-230
    • Sierra, B.1    Larranaga, P.2
  • 14
    • 26044441615 scopus 로고    scopus 로고
    • Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with {TIPS}
    • Blanco R, Inza M, Merino M, Quiroga J, Larranaga P. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with {TIPS}. Journal of Biomedical Informatics 2005; 38(5):376-388.
    • (2005) Journal of Biomedical Informatics , vol.38 , Issue.5 , pp. 376-388
    • Blanco, R.1    Inza, M.2    Merino, M.3    Quiroga, J.4    Larranaga, P.5
  • 15
    • 0031731379 scopus 로고    scopus 로고
    • Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression
    • Kattan MW, Hess KR, Beck JR. Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression. Computers and Biomedical Research 1998; 31(5):363-373.
    • (1998) Computers and Biomedical Research , vol.31 , Issue.5 , pp. 363-373
    • Kattan, M.W.1    Hess, K.R.2    Beck, J.R.3
  • 20
    • 77954144317 scopus 로고    scopus 로고
    • Learning Bayesian networks from survival data using weighting censored instances
    • Stajduhar I, Dalbelo-Basić B. Learning Bayesian networks from survival data using weighting censored instances. Journal of Biomedical Informatics 2010; 43(4):613-622.
    • (2010) Journal of Biomedical Informatics , vol.43 , Issue.4 , pp. 613-622
    • Stajduhar, I.1    Dalbelo-Basić, B.2
  • 21
    • 84857658498 scopus 로고    scopus 로고
    • Uncensoring censored data for machine learning: a likelihood-based approach
    • Stajduhar I, Dalbelo-Basić B. Uncensoring censored data for machine learning: a likelihood-based approach. Expert Systems with Applications 2012; 39(8):7226-7234.
    • (2012) Expert Systems with Applications , vol.39 , Issue.8 , pp. 7226-7234
    • Stajduhar, I.1    Dalbelo-Basić, B.2
  • 22
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: conditions for the optimality of the simple Bayesian classifier
    • Morgan Kaufmann: San Francisco
    • Domingos P, Pazzani M. Beyond independence: conditions for the optimality of the simple Bayesian classifier. In Machine Learning. Morgan Kaufmann: San Francisco, 1996; 105-112.
    • (1996) Machine Learning , pp. 105-112
    • Domingos, P.1    Pazzani, M.2
  • 23
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 1997; 29:103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 24
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes: not so stupid after all?
    • Hand DJ, Yu K. Idiot's Bayes: not so stupid after all?International Statistical Review 2001; 69(3):385-398.
    • (2001) International Statistical Review , vol.69 , Issue.3 , pp. 385-398
    • Hand, D.J.1    Yu, K.2
  • 27
    • 46149134436 scopus 로고
    • Fusion, propagation, and structuring in belief networks
    • Pearl J. Fusion, propagation, and structuring in belief networks. Artificial Intelligence 1986; 29(3):241-288.
    • (1986) Artificial Intelligence , vol.29 , Issue.3 , pp. 241-288
    • Pearl, J.1
  • 30
    • 84938290088 scopus 로고    scopus 로고
    • Knowledge discovery from a breast cancer database
    • Springer: Berlin / Heidelberg
    • Mani S, Pazzani MJ, West J. Knowledge discovery from a breast cancer database. In Artificial Intelligence in Medicine. Springer: Berlin / Heidelberg, 1997; 130-133.
    • (1997) Artificial Intelligence in Medicine , pp. 130-133
    • Mani, S.1    Pazzani, M.J.2    West, J.3
  • 31
    • 0021074133 scopus 로고
    • The effect of assuming independence in applying Bayes' theorem to risk estimation and classification in diagnosis
    • Russek E, Kronmal RA, Fisher LD. The effect of assuming independence in applying Bayes' theorem to risk estimation and classification in diagnosis. Computers and Biomedical Research 1983; 16(6):537-552.
    • (1983) Computers and Biomedical Research , vol.16 , Issue.6 , pp. 537-552
    • Russek, E.1    Kronmal, R.A.2    Fisher, L.D.3
  • 32
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
    • Zadrozny B, Elkan C. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. ICML 2001; 1:609-616.
    • (2001) ICML , vol.1 , pp. 609-616
    • Zadrozny, B.1    Elkan, C.2
  • 35
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713-1723.
    • (2005) Statistics in Medicine , vol.24 , Issue.11 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 36
    • 0030765772 scopus 로고    scopus 로고
    • Linking automated databases for research in managed care settings
    • Selby JV. Linking automated databases for research in managed care settings. Annals of Internal Medicine 1997; 127(8 Pt 2):719-724.
    • (1997) Annals of Internal Medicine , vol.127 , Issue.8 PART. 2 , pp. 719-724
    • Selby, J.V.1
  • 42
    • 0020063002 scopus 로고
    • A review of goodness of fit statistics for use in the development of logistic regression models
    • Lemeshow S, Hosmer DW. A review of goodness of fit statistics for use in the development of logistic regression models. American Journal of Epidemiology 1982; 115(1):92-106.
    • (1982) American Journal of Epidemiology , vol.115 , Issue.1 , pp. 92-106
    • Lemeshow, S.1    Hosmer, D.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.