-
1
-
-
0026011159
-
Cardiovascular disease risk profiles
-
Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. American Heart Journal 1991; 121(1 Pt 2):293-298.
-
(1991)
American Heart Journal
, vol.121
, Issue.1 PART. 2
, pp. 293-298
-
-
Anderson, K.M.1
Odell, P.M.2
Wilson, P.W.3
Kannel, W.B.4
-
2
-
-
0034945516
-
Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation
-
D'Agostino RB, Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. Journal of the American Medical Association 2001; 286(2):180-187.
-
(2001)
Journal of the American Medical Association
, vol.286
, Issue.2
, pp. 180-187
-
-
D'Agostino, R.B.1
Grundy, S.2
Sullivan, L.M.3
Wilson, P.4
-
3
-
-
0004737767
-
The Framingham study: a prospective study of coronary heart disease
-
Kagan A, Dawber TR, Kannel WB, Revotskie N. The Framingham study: a prospective study of coronary heart disease. Federation proceedings 1962; 21(4 Pt 2):52-57.
-
(1962)
Federation proceedings
, vol.21
, Issue.4 PART. 2
, pp. 52-57
-
-
Kagan, A.1
Dawber, T.R.2
Kannel, W.B.3
Revotskie, N.4
-
5
-
-
39549093148
-
General cardiovascular risk profile for use in primary care: the Framingham Heart Study
-
D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117(6):743-753.
-
(2008)
Circulation
, vol.117
, Issue.6
, pp. 743-753
-
-
D'Agostino, R.B.1
Vasan, R.S.2
Pencina, M.J.3
Wolf, P.A.4
Cobain, M.5
Massaro, J.M.6
Kannel, W.B.7
-
7
-
-
0018668029
-
Linear regression with censored data
-
Buckley J, James I. Linear regression with censored data. Biometrika 1979; 66(3):429-436.
-
(1979)
Biometrika
, vol.66
, Issue.3
, pp. 429-436
-
-
Buckley, J.1
James, I.2
-
8
-
-
77953635924
-
Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
-
Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Medical Care 2010; 48(6 Suppl):S106-S113.
-
(2010)
Medical Care
, vol.48
, Issue.6
, pp. S106-S113
-
-
Wu, J.1
Roy, J.2
Stewart, W.F.3
-
9
-
-
85044704563
-
Comparison of machine learning techniques with classical statistical models in predicting health outcomes
-
Song X, Mitnitski A, Cox J, Rockwood K. Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Medinfo 2004; 11(1):736-740.
-
(2004)
Medinfo
, vol.11
, Issue.1
, pp. 736-740
-
-
Song, X.1
Mitnitski, A.2
Cox, J.3
Rockwood, K.4
-
10
-
-
0034566844
-
Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression
-
American Medical Informatics Association: Philadelphia
-
Colombet I, Ruelland A, Chatellier G, Gueyffier F, Degoulet P, Jaulent MC. Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression. In Proceedings of the AMIA Symposium. American Medical Informatics Association: Philadelphia, 2000; 156-160.
-
(2000)
Proceedings of the AMIA Symposium
, pp. 156-160
-
-
Colombet, I.1
Ruelland, A.2
Chatellier, G.3
Gueyffier, F.4
Degoulet, P.5
Jaulent, M.C.6
-
11
-
-
84860366215
-
Looking beyond historical patient outcomes to improve clinical models
-
Chia CC, Rubinfeld I, Scirica BM, McMillan S, Gurm HS, Syed Z. Looking beyond historical patient outcomes to improve clinical models. Science Translational Medicine 2012; 4(131):131ra49.
-
(2012)
Science Translational Medicine
, vol.4
, Issue.131
, pp. 131-149
-
-
Chia, C.C.1
Rubinfeld, I.2
Scirica, B.M.3
McMillan, S.4
Gurm, H.S.5
Syed, Z.6
-
12
-
-
84929843809
-
Learning Bayesian networks by genetic algorithms: a case study in the prediction of survival in malignant skin melanoma
-
Larranaga P, Sierra B, Gallego MJ, Michelena MJ, Picaza JM. Learning Bayesian networks by genetic algorithms: a case study in the prediction of survival in malignant skin melanoma. Artificial Intelligence Medicine 1997; 1211:261-272.
-
(1997)
Artificial Intelligence Medicine
, vol.1211
, pp. 261-272
-
-
Larranaga, P.1
Sierra, B.2
Gallego, M.J.3
Michelena, M.J.4
Picaza, J.M.5
-
13
-
-
0344447109
-
Predicting survival in malignant skill melanoma using Bayesian networks automatically induced by genetic algorithms: an empirical comparison between different approaches
-
Sierra B, Larranaga P. Predicting survival in malignant skill melanoma using Bayesian networks automatically induced by genetic algorithms: an empirical comparison between different approaches. Artificial Intelligence Medicine 1998; 14(1-2):215-230.
-
(1998)
Artificial Intelligence Medicine
, vol.14
, Issue.1-2
, pp. 215-230
-
-
Sierra, B.1
Larranaga, P.2
-
14
-
-
26044441615
-
Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with {TIPS}
-
Blanco R, Inza M, Merino M, Quiroga J, Larranaga P. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with {TIPS}. Journal of Biomedical Informatics 2005; 38(5):376-388.
-
(2005)
Journal of Biomedical Informatics
, vol.38
, Issue.5
, pp. 376-388
-
-
Blanco, R.1
Inza, M.2
Merino, M.3
Quiroga, J.4
Larranaga, P.5
-
15
-
-
0031731379
-
Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression
-
Kattan MW, Hess KR, Beck JR. Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression. Computers and Biomedical Research 1998; 31(5):363-373.
-
(1998)
Computers and Biomedical Research
, vol.31
, Issue.5
, pp. 363-373
-
-
Kattan, M.W.1
Hess, K.R.2
Beck, J.R.3
-
17
-
-
57449111248
-
Random survival forests
-
Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. The Annals of Applied Statistics 2008; 2(3):841-860.
-
(2008)
The Annals of Applied Statistics
, vol.2
, Issue.3
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
19
-
-
84855619327
-
Machine learning for survival analysis: a case study on recurrence of prostate cancer
-
Zupan B, Demsar J, Kattan MW, Beck JR, Bratko I. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artificial Intelligence Medicine 1999; 1620:346-355.
-
(1999)
Artificial Intelligence Medicine
, vol.1620
, pp. 346-355
-
-
Zupan, B.1
Demsar, J.2
Kattan, M.W.3
Beck, J.R.4
Bratko, I.5
-
20
-
-
77954144317
-
Learning Bayesian networks from survival data using weighting censored instances
-
Stajduhar I, Dalbelo-Basić B. Learning Bayesian networks from survival data using weighting censored instances. Journal of Biomedical Informatics 2010; 43(4):613-622.
-
(2010)
Journal of Biomedical Informatics
, vol.43
, Issue.4
, pp. 613-622
-
-
Stajduhar, I.1
Dalbelo-Basić, B.2
-
21
-
-
84857658498
-
Uncensoring censored data for machine learning: a likelihood-based approach
-
Stajduhar I, Dalbelo-Basić B. Uncensoring censored data for machine learning: a likelihood-based approach. Expert Systems with Applications 2012; 39(8):7226-7234.
-
(2012)
Expert Systems with Applications
, vol.39
, Issue.8
, pp. 7226-7234
-
-
Stajduhar, I.1
Dalbelo-Basić, B.2
-
22
-
-
0002419948
-
Beyond independence: conditions for the optimality of the simple Bayesian classifier
-
Morgan Kaufmann: San Francisco
-
Domingos P, Pazzani M. Beyond independence: conditions for the optimality of the simple Bayesian classifier. In Machine Learning. Morgan Kaufmann: San Francisco, 1996; 105-112.
-
(1996)
Machine Learning
, pp. 105-112
-
-
Domingos, P.1
Pazzani, M.2
-
23
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 1997; 29:103-130.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
24
-
-
0035528674
-
Idiot's Bayes: not so stupid after all?
-
Hand DJ, Yu K. Idiot's Bayes: not so stupid after all?International Statistical Review 2001; 69(3):385-398.
-
(2001)
International Statistical Review
, vol.69
, Issue.3
, pp. 385-398
-
-
Hand, D.J.1
Yu, K.2
-
27
-
-
46149134436
-
Fusion, propagation, and structuring in belief networks
-
Pearl J. Fusion, propagation, and structuring in belief networks. Artificial Intelligence 1986; 29(3):241-288.
-
(1986)
Artificial Intelligence
, vol.29
, Issue.3
, pp. 241-288
-
-
Pearl, J.1
-
29
-
-
0001415299
-
Comparison of discrimination techniques applied to a complex data set of head injured patients
-
Titterington DM, Murray GD, Murray LS, Spiegelhalter DJ, Skene AM, Habbema JDF, Gelpke GJ. Comparison of discrimination techniques applied to a complex data set of head injured patients. Journal of the Royal Statistical Society. Series A (General) 1981; 144(2):145.
-
(1981)
Journal of the Royal Statistical Society. Series A (General)
, vol.144
, Issue.2
, pp. 145
-
-
Titterington, D.M.1
Murray, G.D.2
Murray, L.S.3
Spiegelhalter, D.J.4
Skene, A.M.5
Habbema, J.D.F.6
Gelpke, G.J.7
-
30
-
-
84938290088
-
Knowledge discovery from a breast cancer database
-
Springer: Berlin / Heidelberg
-
Mani S, Pazzani MJ, West J. Knowledge discovery from a breast cancer database. In Artificial Intelligence in Medicine. Springer: Berlin / Heidelberg, 1997; 130-133.
-
(1997)
Artificial Intelligence in Medicine
, pp. 130-133
-
-
Mani, S.1
Pazzani, M.J.2
West, J.3
-
31
-
-
0021074133
-
The effect of assuming independence in applying Bayes' theorem to risk estimation and classification in diagnosis
-
Russek E, Kronmal RA, Fisher LD. The effect of assuming independence in applying Bayes' theorem to risk estimation and classification in diagnosis. Computers and Biomedical Research 1983; 16(6):537-552.
-
(1983)
Computers and Biomedical Research
, vol.16
, Issue.6
, pp. 537-552
-
-
Russek, E.1
Kronmal, R.A.2
Fisher, L.D.3
-
32
-
-
0003259364
-
Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
-
Zadrozny B, Elkan C. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. ICML 2001; 1:609-616.
-
(2001)
ICML
, vol.1
, pp. 609-616
-
-
Zadrozny, B.1
Elkan, C.2
-
35
-
-
19944372078
-
Generating survival times to simulate Cox proportional hazards models
-
Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713-1723.
-
(2005)
Statistics in Medicine
, vol.24
, Issue.11
, pp. 1713-1723
-
-
Bender, R.1
Augustin, T.2
Blettner, M.3
-
36
-
-
0030765772
-
Linking automated databases for research in managed care settings
-
Selby JV. Linking automated databases for research in managed care settings. Annals of Internal Medicine 1997; 127(8 Pt 2):719-724.
-
(1997)
Annals of Internal Medicine
, vol.127
, Issue.8 PART. 2
, pp. 719-724
-
-
Selby, J.V.1
-
37
-
-
0035211437
-
Multicenter epidemiologic and health services research on therapeutics in the HMO Research Network Center for Education and Research on Therapeutics
-
Platt R, Davis R, Finkelstein J, Go AS, Gurwitz JH, Roblin D, Soumerai S, Ross-Degnan D, Andrade S, Goodman MJ, Martinson B, Raebel MA, Smith D, Ulcickas-Yood M, Chan KA. Multicenter epidemiologic and health services research on therapeutics in the HMO Research Network Center for Education and Research on Therapeutics. Pharmacoepidemiology and Drug Safety 2001; 10(5):373-377.
-
(2001)
Pharmacoepidemiology and Drug Safety
, vol.10
, Issue.5
, pp. 373-377
-
-
Platt, R.1
Davis, R.2
Finkelstein, J.3
Go, A.S.4
Gurwitz, J.H.5
Roblin, D.6
Soumerai, S.7
Ross-Degnan, D.8
Andrade, S.9
Goodman, M.J.10
Martinson, B.11
Raebel, M.A.12
Smith, D.13
Ulcickas-Yood, M.14
Chan, K.A.15
-
38
-
-
69749100409
-
Design of a national distributed health data network
-
Maro JC, Platt R, Holmes JH, Strom BL, Hennessy S, Lazarus R, Brown JS. Design of a national distributed health data network. Annals of Internal Medicine 2009; 151(5):341-344.
-
(2009)
Annals of Internal Medicine
, vol.151
, Issue.5
, pp. 341-344
-
-
Maro, J.C.1
Platt, R.2
Holmes, J.H.3
Strom, B.L.4
Hennessy, S.5
Lazarus, R.6
Brown, J.S.7
-
42
-
-
0020063002
-
A review of goodness of fit statistics for use in the development of logistic regression models
-
Lemeshow S, Hosmer DW. A review of goodness of fit statistics for use in the development of logistic regression models. American Journal of Epidemiology 1982; 115(1):92-106.
-
(1982)
American Journal of Epidemiology
, vol.115
, Issue.1
, pp. 92-106
-
-
Lemeshow, S.1
Hosmer, D.W.2
-
44
-
-
84903159932
-
2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
-
Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Gibbons R, Greenland P, Lackland DT, Levy D, O'Donnell CJ, Robinson J, Schwartz JS, Shero ST, Smith SC, Sorlie P, Stone NJ, Wilson PWF. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2013. DOI: 10.1161/01.cir.0000437741.48606.98.
-
(2013)
Circulation
-
-
Goff, D.C.1
Lloyd-Jones, D.M.2
Bennett, G.3
Coady, S.4
D'Agostino, R.B.5
Gibbons, R.6
Greenland, P.7
Lackland, D.T.8
Levy, D.9
O'Donnell, C.J.10
Robinson, J.11
Schwartz, J.S.12
Shero, S.T.13
Smith, S.C.14
Sorlie, P.15
Stone, N.J.16
Wilson, P.W.F.17
|