메뉴 건너뛰기




Volumn 39, Issue 8, 2012, Pages 7226-7234

Uncensoring censored data for machine learning: A likelihood-based approach

Author keywords

Censoring; Classification; Data likelihood; Denoising; Machine learning; Survival analysis

Indexed keywords

CENSORING; DATA LIKELIHOOD; DE-NOISING; MACHINE-LEARNING; SURVIVAL ANALYSIS;

EID: 84857658498     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2012.01.054     Document Type: Article
Times cited : (14)

References (40)
  • 1
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2 cv F test for comparing supervised classification learning algorithms
    • E. Alpaydin Combined 5 × 2 cv F test for comparing supervised classification learning algorithms Neural Computation 11 1999 1885 1892
    • (1999) Neural Computation , vol.11 , pp. 1885-1892
    • Alpaydin, E.1
  • 4
    • 37249089420 scopus 로고    scopus 로고
    • Predictive data mining in clinical medicine: Current issues and guidelines
    • R. Bellazzi, and B. Zupan Predictive data mining in clinical medicine: Current issues and guidelines International Journal of Medical Informatics 77 2008 81 97
    • (2008) International Journal of Medical Informatics , vol.77 , pp. 81-97
    • Bellazzi, R.1    Zupan, B.2
  • 5
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • R. Bender, T. Augustin, and M. Blettner Generating survival times to simulate Cox proportional hazards models Statistics in Medicine 24 2005 1713 1723
    • (2005) Statistics in Medicine , vol.24 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 6
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach Statistics in Medicine 17 1998 1169 1186
    • (1998) Statistics in Medicine , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 10
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • D. Delen, G. Walker, and A. Kadam Predicting breast cancer survivability: A comparison of three data mining methods Artificial Intelligence in Medicine 34 2005 113 127
    • (2005) Artificial Intelligence in Medicine , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 12
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-One loss
    • P. Domingos, and M. Pazzani On the optimality of the simple Bayesian classifier under zero-One loss Machine Learning 29 1997 103 130
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 13
    • 47049127967 scopus 로고    scopus 로고
    • Sparse kernel methods for high-dimensional survival data
    • L. Evers, and C.-M. Messow Sparse kernel methods for high-dimensional survival data Bioinformatics 24 2008 1632 1638
    • (2008) Bioinformatics , vol.24 , pp. 1632-1638
    • Evers, L.1    Messow, C.-M.2
  • 16
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher Assessment and comparison of prognostic classification schemes for survival data Statistics in Medicine 18 1999 2529 2545
    • (1999) Statistics in Medicine , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 17
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J.A. Hanley, and B.J. McNeil The meaning and use of the area under a receiver operating characteristic (ROC) curve Radiology 143 1982 29 36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 23
    • 49549124272 scopus 로고    scopus 로고
    • Logical analysis of survival data: Prognostic survival models by detecting high-degree interactions in right-censored data
    • L.-P. Kronek, and A. Reddy Logical analysis of survival data: Prognostic survival models by detecting high-degree interactions in right-censored data Bioinformatics 24 2008 248 253
    • (2008) Bioinformatics , vol.24 , pp. 248-253
    • Kronek, L.-P.1    Reddy, A.2
  • 24
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • W. Lam, and F. Bacchus Learning Bayesian belief networks: An approach based on the MDL principle Computational Intelligence 10 1994 269 293
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 26
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • P.J.G. Lisboa, H. Wong, P. Harris, and R. Swindell A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer Artificial Intelligence In Medicine 28 2003 1 25
    • (2003) Artificial Intelligence in Medicine , vol.28 , pp. 1-25
    • Lisboa, P.J.G.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 30
    • 0000957062 scopus 로고
    • Asymptotically efficient rank invariant test procedures
    • R. Peto, and J. Peto Asymptotically efficient rank invariant test procedures Journal of the Royal Statistical Society 135 1972 185 207
    • (1972) Journal of the Royal Statistical Society , vol.135 , pp. 185-207
    • Peto, R.1    Peto, J.2
  • 31
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing Vienna, AT. Accessed 07.02.11
    • R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, AT. Accessed 07.02.11.
    • (2008) R: A Language and Environment for Statistical Computing
  • 32
    • 0006117317 scopus 로고    scopus 로고
    • Neural networks as statistical methods in survival analysis
    • V. Gant, R. Dybowski, Cambridge University Press Cambridge, UK
    • B.D. Ripley, and R.M. Ripley Neural networks as statistical methods in survival analysis V. Gant, R. Dybowski, Clinical Applications of Artificial Neural Networks 2001 Cambridge University Press Cambridge, UK 237 255
    • (2001) Clinical Applications of Artificial Neural Networks , pp. 237-255
    • Ripley, B.D.1    Ripley, R.M.2
  • 33
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • P. Royston, and W. Sauerbrei A new measure of prognostic separation in survival data Statistics in Medicine 23 2004 723 748
    • (2004) Statistics in Medicine , vol.23 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2
  • 34
    • 0028148549 scopus 로고
    • Artificial neural networks in the diagnosis and prognosis of prostate cancer: A pilot study
    • P.B. Snow, D.S. Smith, and W.J. Catalona Artificial neural networks in the diagnosis and prognosis of prostate cancer: A pilot study The Journal of Urology 152 1994 1923 1926
    • (1994) The Journal of Urology , vol.152 , pp. 1923-1926
    • Snow, P.B.1    Smith, D.S.2    Catalona, W.J.3
  • 36
    • 77954144317 scopus 로고    scopus 로고
    • Learning Bayesian networks from survival data using weighting censored instances
    • I. Štajduhar, and B. Dalbelo-Bašić Learning Bayesian networks from survival data using weighting censored instances Journal of Biomedical Informatics 43 2010 613 622
    • (2010) Journal of Biomedical Informatics , vol.43 , pp. 613-622
    • Štajduhar, I.1    Dalbelo-Bašić, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.