메뉴 건너뛰기




Volumn 2015-January, Issue January, 2015, Pages 461-477

Learning privately with labeled and unlabeled examples

Author keywords

[No Author keywords available]

Indexed keywords

MACHINE LEARNING; SUPERVISED LEARNING;

EID: 84938272619     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611973730.32     Document Type: Conference Paper
Times cited : (29)

References (30)
  • 1
  • 5
    • 84894624083 scopus 로고    scopus 로고
    • Bounds on the sample complexity for private learning and private data release
    • Amos Beimel, Hai Brenner, Shiva Prasad Ka-siviswanathan, and Kobbi Nissim. Bounds on the sample complexity for private learning and private data release. Machine Learning, 94(3):401-437, 2014.
    • (2014) Machine Learning , vol.94 , Issue.3 , pp. 401-437
    • Beimel, A.1    Brenner, H.2    Ka-Siviswanathan, S.P.3    Nissim, K.4
  • 6
    • 84873351478 scopus 로고    scopus 로고
    • Characterizing the sample complexity of private learners
    • Robert D. Kleinberg, editor, ACM
    • Amos Beimel, Kobbi Nissim, and Uri Stemmer. Characterizing the sample complexity of private learners. In Robert D. Kleinberg, editor, ITCS, pages 97-110. ACM, 2013.
    • (2013) ITCS , pp. 97-110
    • Beimel, A.1    Nissim, K.2    Stemmer, U.3
  • 7
    • 84885226635 scopus 로고    scopus 로고
    • Private learning and sanitization: Pure vs approximate differential privacy
    • Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and Jose D. P. Rolim, editors, Springer
    • Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: Pure vs. approximate differential privacy. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and Jose D. P. Rolim, editors, APPROX-RANDOM, volume 8096 of Lecture Notes in Computer Science, pages 363-378. Springer, 2013.
    • (2013) APPROX-RANDOM, Volume 8096 of Lecture Notes in Computer Science , pp. 363-378
    • Beimel, A.1    Nissim, K.2    Stemmer, U.3
  • 8
    • 33244468835 scopus 로고    scopus 로고
    • Practical privacy: The SuLQ framework
    • Chen Li, editor, ACM
    • Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: The SuLQ framework. In Chen Li, editor, PODS, pages 128-138. ACM, 2005.
    • (2005) PODS , pp. 128-138
    • Blum, A.1    Dwork, C.2    McSherry, F.3    Nissim, K.4
  • 9
    • 84877909042 scopus 로고    scopus 로고
    • A learning theory approach to noninteractive database privacy
    • Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to noninteractive database privacy. J. ACM, 60(2):12, 2013.
    • (2013) J. ACM , vol.60 , Issue.2 , pp. 12
    • Blum, A.1    Ligett, K.2    Roth, A.3
  • 10
    • 0024750852 scopus 로고
    • Learnability and the vapnik-chervonenkis dimension
    • Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the vapnik-chervonenkis dimension. J. ACM, 36(4):929-965, 1989.
    • (1989) J. ACM , vol.36 , Issue.4 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.K.4
  • 12
    • 84885588035 scopus 로고    scopus 로고
    • Sample complexity bounds for differentially private learning
    • Sham M. Kakade and Ulrike von Luxburg editors, JMLR.org
    • Kamalika Chaudhuri and Daniel Hsu. Sample complexity bounds for differentially private learning. In Sham M. Kakade and Ulrike von Luxburg, editors, COLT, volume 19 of JMLR Proceedings, pages 155-186. JMLR.org, 2011.
    • (2011) COLT, Volume 19 of JMLR Proceedings , pp. 155-186
    • Chaudhuri, K.1    Hsu, D.2
  • 13
    • 74549118164 scopus 로고    scopus 로고
    • Privacy-preserving logistic regression
    • Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Leon Bottou, editors, MIT Press
    • Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Leon Bottou, editors, NIPS. MIT Press, 2008.
    • (2008) NIPS
    • Chaudhuri, K.1    Monteleoni, C.2
  • 14
    • 79955858775 scopus 로고    scopus 로고
    • Differentially private empirical risk minimization
    • July
    • Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical risk minimization. J. Mach. Learn. Res., 12:1069-1109, July 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1069-1109
    • Chaudhuri, K.1    Monteleoni, C.2    Sarwate, A.D.3
  • 16
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • Shai Halevi and Tal Rabin, editors, Springer
    • Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in Computer Science, pages 265-284. Springer, 2006.
    • (2006) TCC, Volume 3876 of Lecture Notes in Computer Science , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 17
    • 78751522594 scopus 로고    scopus 로고
    • Boosting and differential privacy
    • IEEE Computer Society
    • Cynthia Dwork, Guy N. Rothblum, and Salil P. Vad-han. Boosting and differential privacy. In FOCS, pages 51-60. IEEE Computer Society, 2010.
    • (2010) FOCS , pp. 51-60
    • Dwork, C.1    Rothblum, G.N.2    Vad-Han, S.P.3
  • 18
    • 0024739191 scopus 로고
    • A general lower bound on the number of examples needed for learning
    • Andrzej Ehrenfeucht, David Haussler, Michael J. Kearns, and Leslie G. Valiant. A general lower bound on the number of examples needed for learning. Inf. Comput., 82(3):247-261, 1989.
    • (1989) Inf. Comput. , vol.82 , Issue.3 , pp. 247-261
    • Ehrenfeucht, A.1    Haussler, D.2    Kearns, M.J.3    Valiant, L.G.4
  • 19
    • 84938270983 scopus 로고    scopus 로고
    • Sample complexity bounds on differentially private learning via communication complexity
    • 1402.6278
    • Vitaly Feldman and David Xiao. Sample complexity bounds on differentially private learning via communication complexity. CoRR, abs/1402.6278, 2014.
    • (2014) CoRR
    • Feldman, V.1    Xiao, D.2
  • 20
    • 48249112672 scopus 로고    scopus 로고
    • Learning to recognize patterns without a teacher
    • September
    • S. Fralick. Learning to recognize patterns without a teacher. IEEE Trans. Inf. Theor., 13(1):57-64, September 2006.
    • (2006) IEEE Trans. Inf. Theor. , vol.13 , Issue.1 , pp. 57-64
    • Fralick, S.1
  • 22
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983-1006, 1998.
    • (1998) J. ACM , vol.45 , Issue.6 , pp. 983-1006
    • Kearns, M.J.1
  • 23
    • 0000314722 scopus 로고    scopus 로고
    • Employing em and pool-based active learning for text classification
    • San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
    • Andrew McCallum and Kamal Nigam. Employing em and pool-based active learning for text classification. In Proceedings of the Fifteenth International Conference on Machine Learning, ICML '98, pages 350-358, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.
    • (1998) Proceedings of the Fifteenth International Conference on Machine Learning, ICML '98 , pp. 350-358
    • McCallum, A.1    Nigam, K.2
  • 24
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • IEEE Computer Society
    • Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, pages 94-103. IEEE Computer Society, 2007.
    • (2007) FOCS , pp. 94-103
    • McSherry, F.1    Talwar, K.2
  • 25
    • 84867131655 scopus 로고    scopus 로고
    • Learning in a large function space: Privacy-preserving mechanisms for SVM learning
    • 0911.5708
    • Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, and Nina Taft. Learning in a large function space: Privacy-preserving mechanisms for svm learning. CoRR, abs/0911.5708, 2009.
    • (2009) CoRR
    • Rubinstein, B.I.P.1    Bartlett, P.L.2    Huang, L.3    Taft, N.4
  • 27
    • 38049094034 scopus 로고
    • Probability of error of some adaptive pattern-recognition machines
    • Jul
    • III Scudder, H. Probability of error of some adaptive pattern-recognition machines. Information Theory, IEEE Transactions on, 11(3):363-371, Jul 1965.
    • (1965) Information Theory, IEEE Transactions on , vol.11 , Issue.3 , pp. 363-371
    • Scudder, H.1
  • 28
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142, 1984.
    • (1984) Commun ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 30
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vladimir N. Vapnik and Alexey Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264-280, 1971.
    • (1971) Theory of Probability and Its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.