-
2
-
-
77950560786
-
Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis
-
Karahaliou A., Vassiou K., Arikidis N.S., Skiadopoulo S., Kanavou T., and Costaridou L., Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis. British Journal of Radiology, 83(988):296-309, 2010.
-
(2010)
British Journal of Radiology
, vol.83
, Issue.988
, pp. 296-309
-
-
Karahaliou, A.1
Vassiou, K.2
Arikidis, N.S.3
Skiadopoulo, S.4
Kanavou, T.5
Costaridou, L.6
-
3
-
-
84878113838
-
Characterization of spatiotemporal changes for the classification of dynamic contrastenhanced magnetic-resonance breast lesions
-
Milenkovi J., Hertl K., Koir A., ibert J., and Tasi J.F., Characterization of spatiotemporal changes for the classification of dynamic contrastenhanced magnetic-resonance breast lesions. Artificial intelligence in medicine, 2013.
-
(2013)
Artificial Intelligence in Medicine
-
-
Milenkovi, J.1
Hertl, K.2
Koir, A.3
Ibert, J.4
Tasi, J.F.5
-
4
-
-
84938142212
-
-
Uppuluri A., http://wwwmathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features., 2008.
-
(2008)
-
-
Uppuluri, A.1
-
5
-
-
70350632628
-
Rotation invariant image description with local binary pattern histogram fourier features
-
Springer Berlin Heidelberg
-
Ahonen T., Matas J., He C., and Pietikinen M., Rotation invariant image description with local binary pattern histogram fourier features. Image Analysis Springer Berlin Heidelberg, 61-70, 2009.
-
(2009)
Image Analysis
, pp. 61-70
-
-
Ahonen, T.1
Matas, J.2
He, C.3
Pietikinen, M.4
-
6
-
-
0018306059
-
A threshold selection method from gray-level histogram
-
Otsu N., A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man, and Cybernetics, 9:62-66, 1979.
-
(1979)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.9
, pp. 62-66
-
-
Otsu, N.1
-
8
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R. and John G.H., Wrappers for feature subset selection. Artificial Intelligence. 97(1-2):273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
9
-
-
84886249973
-
Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer
-
Golden D.I., Rubin D.L., Lipson J.A., Telli M.L., and Ford J.M., Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer. Journal of the American Medical Informatics Association, 2013.
-
(2013)
Journal of the American Medical Informatics Association
-
-
Golden, D.I.1
Rubin, D.L.2
Lipson, J.A.3
Telli, M.L.4
Ford, J.M.5
-
10
-
-
41949111860
-
Estrogen receptor and breast MR imaging features: A correlation study
-
Chen J.H., Baek H.M., Nalcioglu O., and Su M.Y., Estrogen receptor and breast MR imaging features: A correlation study. Journal of Magnetic Resonance Imaging, vol. 27(4), pp. 825-833, 2008.
-
(2008)
Journal of Magnetic Resonance Imaging
, vol.27
, Issue.4
, pp. 825-833
-
-
Chen, J.H.1
Baek, H.M.2
Nalcioglu, O.3
Su, M.Y.4
-
11
-
-
70449419635
-
Segmentation and classification of triple negative breast cancers using DCE-MRI
-
IEEE International Symposium on. IEEE
-
Agner S.C., et al., Segmentation and classification of triple negative breast cancers using DCE-MRI. Biomedical Imaging: From Nano to Macro, ISBI'09. IEEE International Symposium on. IEEE, 2009.
-
(2009)
Biomedical Imaging: From Nano to Macro, ISBI'09
-
-
Agner, S.C.1
-
14
-
-
33646699573
-
Rim enhancement of breast cancers on contrastenhanced MR imaging: Relationship with prognostic factors
-
Jinguji M., et al., Rim enhancement of breast cancers on contrastenhanced MR imaging: relationship with prognostic factors. Breast Cancer, 13(1):64-73, 2006.
-
(2006)
Breast Cancer
, vol.13
, Issue.1
, pp. 64-73
-
-
Jinguji, M.1
-
15
-
-
0033692478
-
Breast masses with peripheral rim enhancement on dynamic contrast-enhanced MR images: Correlation of MR findings with histologic features and expression of growth factors1
-
Matsubayashi R., Matsuo Y., Edakuni G., Satoh T., Tokunaga O., and Kudo S., Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors1. Radiology, 217(3):841-848, 2000.
-
(2000)
Radiology
, vol.217
, Issue.3
, pp. 841-848
-
-
Matsubayashi, R.1
Matsuo, Y.2
Edakuni, G.3
Satoh, T.4
Tokunaga, O.5
Kudo, S.6
-
16
-
-
33646136903
-
Dynamic MR imaging of breast lesions: Correlation with microvessel distribution pattern and histologic characteristics of prognosis1
-
Teifke A., et al. Dynamic MR imaging of breast lesions: Correlation with microvessel distribution pattern and histologic characteristics of prognosis1. Radiology 239(2):351-360, 2006.
-
(2006)
Radiology
, vol.239
, Issue.2
, pp. 351-360
-
-
Teifke, A.1
-
17
-
-
84886801605
-
MR imaging features of triplenegative breast cancers
-
Sung J.S., et al., MR Imaging Features of TripleNegative Breast Cancers. The breast journal 19(6):643-649, 2013.
-
(2013)
The Breast Journal
, vol.19
, Issue.6
, pp. 643-649
-
-
Sung, J.S.1
-
18
-
-
84897050488
-
Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor's most suspect region only?
-
Glaser S., Niemann U., Preim B., and Spiliopoulou M., Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor's most suspect region only?. In Computer-Based Medical Systems, 77-82, 2013.
-
(2013)
Computer-Based Medical Systems
, pp. 77-82
-
-
Glaser, S.1
Niemann, U.2
Preim, B.3
Spiliopoulou, M.4
-
22
-
-
84938142214
-
-
Matlab Documentation Center
-
Thompson C.M., Resize image using imresize, Matlab Documentation Center(http://www.mathworks.com/help/images/ref/imresize.html). 1992.
-
(1992)
Resize Image Using Imresize
-
-
Thompson, C.M.1
-
23
-
-
84874956114
-
Classification of small lesions in breast MRI: Evaluating the role of dynamically extracted texture features through feature selection
-
Nagarajan M.B., et al., Classification of Small Lesions in Breast MRI: Evaluating The Role of Dynamically Extracted Texture Features Through Feature Selection. Journal of Medical and Biological Engineering, 33(1): 59-68, 2013.
-
(2013)
Journal of Medical and Biological Engineering
, vol.33
, Issue.1
, pp. 59-68
-
-
Nagarajan, M.B.1
-
24
-
-
36348986747
-
Volumetric texture analysis of breast lesions on contrastenhanced magnetic resonance images
-
Chen W., et al., Volumetric texture analysis of breast lesions on contrastenhanced magnetic resonance images.Magnetic Resonance in Medicine, 58(3):562-571, 2007.
-
(2007)
Magnetic Resonance in Medicine
, vol.58
, Issue.3
, pp. 562-571
-
-
Chen, W.1
-
25
-
-
84864758525
-
Evaluation: From precision, recall and f-measure to ROC, informedness, markedness & correlation
-
Powers D.M.W., Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2(1): 37-63, 2011.
-
(2011)
Journal of Machine Learning Technologies
, vol.2
, Issue.1
, pp. 37-63
-
-
Powers, D.M.W.1
-
30
-
-
84885937984
-
Heterogeneity wavelet kinetics from DCE-MRI for classifying gene expression based breast cancer recurrence risk
-
Mahrooghy M., et al. Heterogeneity Wavelet Kinetics from DCE-MRI for Classifying Gene Expression Based Breast Cancer Recurrence Risk. MICCAI 2013. 295-302, 2013.
-
(2013)
MICCAI 2013
, pp. 295-302
-
-
Mahrooghy, M.1
|