메뉴 건너뛰기




Volumn 2014-January, Issue January, 2014, Pages 2624-2629

Using features from tumor subregions of breast DCE-MRI for estrogen receptor status prediction

Author keywords

Breast tumor subregions; DCE MRI; Estrogen receptor; Heterogeneity; Textural kinetics

Indexed keywords

ALGORITHMS; CYBERNETICS; KINETICS; MAGNETIC RESONANCE IMAGING; MEDICAL IMAGING; TUMORS;

EID: 84938150965     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/smc.2014.6974323     Document Type: Conference Paper
Times cited : (9)

References (30)
  • 2
    • 77950560786 scopus 로고    scopus 로고
    • Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis
    • Karahaliou A., Vassiou K., Arikidis N.S., Skiadopoulo S., Kanavou T., and Costaridou L., Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis. British Journal of Radiology, 83(988):296-309, 2010.
    • (2010) British Journal of Radiology , vol.83 , Issue.988 , pp. 296-309
    • Karahaliou, A.1    Vassiou, K.2    Arikidis, N.S.3    Skiadopoulo, S.4    Kanavou, T.5    Costaridou, L.6
  • 3
    • 84878113838 scopus 로고    scopus 로고
    • Characterization of spatiotemporal changes for the classification of dynamic contrastenhanced magnetic-resonance breast lesions
    • Milenkovi J., Hertl K., Koir A., ibert J., and Tasi J.F., Characterization of spatiotemporal changes for the classification of dynamic contrastenhanced magnetic-resonance breast lesions. Artificial intelligence in medicine, 2013.
    • (2013) Artificial Intelligence in Medicine
    • Milenkovi, J.1    Hertl, K.2    Koir, A.3    Ibert, J.4    Tasi, J.F.5
  • 4
    • 84938142212 scopus 로고    scopus 로고
    • Uppuluri A., http://wwwmathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features., 2008.
    • (2008)
    • Uppuluri, A.1
  • 5
    • 70350632628 scopus 로고    scopus 로고
    • Rotation invariant image description with local binary pattern histogram fourier features
    • Springer Berlin Heidelberg
    • Ahonen T., Matas J., He C., and Pietikinen M., Rotation invariant image description with local binary pattern histogram fourier features. Image Analysis Springer Berlin Heidelberg, 61-70, 2009.
    • (2009) Image Analysis , pp. 61-70
    • Ahonen, T.1    Matas, J.2    He, C.3    Pietikinen, M.4
  • 8
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R. and John G.H., Wrappers for feature subset selection. Artificial Intelligence. 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 10
    • 41949111860 scopus 로고    scopus 로고
    • Estrogen receptor and breast MR imaging features: A correlation study
    • Chen J.H., Baek H.M., Nalcioglu O., and Su M.Y., Estrogen receptor and breast MR imaging features: A correlation study. Journal of Magnetic Resonance Imaging, vol. 27(4), pp. 825-833, 2008.
    • (2008) Journal of Magnetic Resonance Imaging , vol.27 , Issue.4 , pp. 825-833
    • Chen, J.H.1    Baek, H.M.2    Nalcioglu, O.3    Su, M.Y.4
  • 11
    • 70449419635 scopus 로고    scopus 로고
    • Segmentation and classification of triple negative breast cancers using DCE-MRI
    • IEEE International Symposium on. IEEE
    • Agner S.C., et al., Segmentation and classification of triple negative breast cancers using DCE-MRI. Biomedical Imaging: From Nano to Macro, ISBI'09. IEEE International Symposium on. IEEE, 2009.
    • (2009) Biomedical Imaging: From Nano to Macro, ISBI'09
    • Agner, S.C.1
  • 14
    • 33646699573 scopus 로고    scopus 로고
    • Rim enhancement of breast cancers on contrastenhanced MR imaging: Relationship with prognostic factors
    • Jinguji M., et al., Rim enhancement of breast cancers on contrastenhanced MR imaging: relationship with prognostic factors. Breast Cancer, 13(1):64-73, 2006.
    • (2006) Breast Cancer , vol.13 , Issue.1 , pp. 64-73
    • Jinguji, M.1
  • 15
    • 0033692478 scopus 로고    scopus 로고
    • Breast masses with peripheral rim enhancement on dynamic contrast-enhanced MR images: Correlation of MR findings with histologic features and expression of growth factors1
    • Matsubayashi R., Matsuo Y., Edakuni G., Satoh T., Tokunaga O., and Kudo S., Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors1. Radiology, 217(3):841-848, 2000.
    • (2000) Radiology , vol.217 , Issue.3 , pp. 841-848
    • Matsubayashi, R.1    Matsuo, Y.2    Edakuni, G.3    Satoh, T.4    Tokunaga, O.5    Kudo, S.6
  • 16
    • 33646136903 scopus 로고    scopus 로고
    • Dynamic MR imaging of breast lesions: Correlation with microvessel distribution pattern and histologic characteristics of prognosis1
    • Teifke A., et al. Dynamic MR imaging of breast lesions: Correlation with microvessel distribution pattern and histologic characteristics of prognosis1. Radiology 239(2):351-360, 2006.
    • (2006) Radiology , vol.239 , Issue.2 , pp. 351-360
    • Teifke, A.1
  • 17
    • 84886801605 scopus 로고    scopus 로고
    • MR imaging features of triplenegative breast cancers
    • Sung J.S., et al., MR Imaging Features of TripleNegative Breast Cancers. The breast journal 19(6):643-649, 2013.
    • (2013) The Breast Journal , vol.19 , Issue.6 , pp. 643-649
    • Sung, J.S.1
  • 18
    • 84897050488 scopus 로고    scopus 로고
    • Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor's most suspect region only?
    • Glaser S., Niemann U., Preim B., and Spiliopoulou M., Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor's most suspect region only?. In Computer-Based Medical Systems, 77-82, 2013.
    • (2013) Computer-Based Medical Systems , pp. 77-82
    • Glaser, S.1    Niemann, U.2    Preim, B.3    Spiliopoulou, M.4
  • 22
    • 84938142214 scopus 로고
    • Matlab Documentation Center
    • Thompson C.M., Resize image using imresize, Matlab Documentation Center(http://www.mathworks.com/help/images/ref/imresize.html). 1992.
    • (1992) Resize Image Using Imresize
    • Thompson, C.M.1
  • 23
    • 84874956114 scopus 로고    scopus 로고
    • Classification of small lesions in breast MRI: Evaluating the role of dynamically extracted texture features through feature selection
    • Nagarajan M.B., et al., Classification of Small Lesions in Breast MRI: Evaluating The Role of Dynamically Extracted Texture Features Through Feature Selection. Journal of Medical and Biological Engineering, 33(1): 59-68, 2013.
    • (2013) Journal of Medical and Biological Engineering , vol.33 , Issue.1 , pp. 59-68
    • Nagarajan, M.B.1
  • 24
    • 36348986747 scopus 로고    scopus 로고
    • Volumetric texture analysis of breast lesions on contrastenhanced magnetic resonance images
    • Chen W., et al., Volumetric texture analysis of breast lesions on contrastenhanced magnetic resonance images.Magnetic Resonance in Medicine, 58(3):562-571, 2007.
    • (2007) Magnetic Resonance in Medicine , vol.58 , Issue.3 , pp. 562-571
    • Chen, W.1
  • 25
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From precision, recall and f-measure to ROC, informedness, markedness & correlation
    • Powers D.M.W., Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2(1): 37-63, 2011.
    • (2011) Journal of Machine Learning Technologies , vol.2 , Issue.1 , pp. 37-63
    • Powers, D.M.W.1
  • 30
    • 84885937984 scopus 로고    scopus 로고
    • Heterogeneity wavelet kinetics from DCE-MRI for classifying gene expression based breast cancer recurrence risk
    • Mahrooghy M., et al. Heterogeneity Wavelet Kinetics from DCE-MRI for Classifying Gene Expression Based Breast Cancer Recurrence Risk. MICCAI 2013. 295-302, 2013.
    • (2013) MICCAI 2013 , pp. 295-302
    • Mahrooghy, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.