메뉴 건너뛰기




Volumn 9035, Issue , 2014, Pages

New method for predicting estrogen receptor status utilizing breast MRI texture kinetic analysis

Author keywords

DCE MRI; Estrogen receptor; Heterogeneity; Local binary pattern; Naive Bayes; Textural kinetic features

Indexed keywords

CELLS; CLASSIFIERS; COMPUTER AIDED DIAGNOSIS; DISEASES; EVOLUTIONARY ALGORITHMS; HEMODYNAMICS; MAGNETIC RESONANCE IMAGING; STATISTICAL METHODS; TEXTURES; TUMORS;

EID: 84902106452     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.2043188     Document Type: Conference Paper
Times cited : (4)

References (17)
  • 1
    • 75749149659 scopus 로고    scopus 로고
    • A review of automatic mass detection and segmentation in mammographic images
    • Oliver A, et al., "A review of automatic mass detection and segmentation in mammographic images," Medical Image Analysis, 14, 87-110(2010).
    • (2010) Medical Image Analysis , vol.14 , pp. 87-110
    • Oliver, A.1
  • 2
    • 80052983073 scopus 로고    scopus 로고
    • New spatiotemporal features for improved discrimination of benign and malignant lesions in dynamic contrast-enhanced-magnetic resonance imaging of the breast
    • Gal Y, et al., "New spatiotemporal features for improved discrimination of benign and malignant lesions in dynamic contrast-enhanced- magnetic resonance imaging of the breast," Journal of Computer Assisted Tomography;35, 645-52(2011).
    • (2011) Journal of Computer Assisted Tomography , vol.35 , pp. 645-652
    • Gal, Y.1
  • 3
    • 77950560786 scopus 로고    scopus 로고
    • Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis
    • Karahaliou A, et al., "Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis," British Journal of Radiology. 83, 296-309(2010).
    • (2010) British Journal of Radiology , vol.83 , pp. 296-309
    • Karahaliou, A.1
  • 4
    • 84878113838 scopus 로고    scopus 로고
    • Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions
    • Milenkovíc J, et al., "Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions," Artificial Intelligence Med, (2013).
    • (2013) Artificial Intelligence Med
    • Milenkovíc, J.1
  • 6
    • 84902097727 scopus 로고    scopus 로고
    • Distinguishing molecular subtypes of breast cancer based on computer-aided diagnosis of dce-mri
    • Agner,S et al., "Distinguishing molecular subtypes of breast cancer based on computer-aided diagnosis of dce-mri," International Society for Magnetic Resonance in Medicine Annual Meeting, 2490(2010).
    • (2010) International Society for Magnetic Resonance in Medicine Annual Meeting , pp. 2490
    • Agner, S.1
  • 7
    • 33645729203 scopus 로고    scopus 로고
    • Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast Cancer
    • Berry, D. A., "Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast Cancer," JAMA: The journal of the American Medical Association, 295(14), 1658-1667(2006).
    • (2006) JAMA: The Journal of the American Medical Association , vol.295 , Issue.14 , pp. 1658-1667
    • Berry, D.A.1
  • 8
    • 0037019734 scopus 로고    scopus 로고
    • Endocrine responsiveness and tailoring adjuvant therapy for postmenopausal lymph nodenegative breast cancer: A randomized trial
    • Goldhirsch, A. S. C, "Endocrine responsiveness and tailoring adjuvant therapy for postmenopausal lymph nodenegative breast cancer: a randomized trial," Journal of the National Cancer Institute, 94(14),(2002).
    • (2002) Journal of the National Cancer Institute , vol.94 , Issue.14
    • Goldhirsch, A.S.C.1
  • 10
    • 84902097728 scopus 로고    scopus 로고
    • Uppuluri. A., "http://www. mathworks. com/matlabcentral/ fileexchange/22187-glcm-texture-features," [Online] (2008).
    • (2008)
    • Uppuluri, A.1
  • 13
    • 84874956114 scopus 로고    scopus 로고
    • Classification of small lesions in breast MRI: Evaluating the role of dynamically extracted texture features through feature selection
    • Nagarajan,M. B. et al., "Classification of Small Lesions in Breast MRI: Evaluating The Role of Dynamically Extracted Texture Features Through Feature Selection,"Journal of Medical and Biological Engineering, 33(1), 59-68(2013).
    • (2013) Journal of Medical and Biological Engineering , vol.33 , Issue.1 , pp. 59-68
    • Nagarajan, M.B.1
  • 15
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • Kononenko I., "Estimating Attributes: Analysis and Extensions of RELIEF," In: European Conference on Machine Learning, 171-182(1994).
    • (1994) European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 16
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R. and John G. H.,"Wrappers for feature subset selection," Artificial Intelligence, 97(1-2), 273-324(1997).
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.