메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 953-958

Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks

Author keywords

Ethanol; Garson equation; Modelling; Neural networks; Sugar beet; Yeast

Indexed keywords

BIOETHANOL; ETHANOL; FERMENTATION; FORECASTING; MODELS; NETWORK ARCHITECTURE; SUBSTRATES; SUGAR BEETS; YEAST;

EID: 84938099481     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2015.07.054     Document Type: Article
Times cited : (48)

References (17)
  • 1
    • 33846893475 scopus 로고    scopus 로고
    • Model based control of yeast fermentation bioreactor using optimally designed artificial neural networks
    • Nagy Z.K. Model based control of yeast fermentation bioreactor using optimally designed artificial neural networks. Chem. Eng. J. 2007, 127:95-109.
    • (2007) Chem. Eng. J. , vol.127 , pp. 95-109
    • Nagy, Z.K.1
  • 3
    • 84855937778 scopus 로고    scopus 로고
    • Optimization of ethanol production from thick juice: a response surface methodology approach
    • Grahovac J., Dodić J., Jokić A., Dodić S., Popov S. Optimization of ethanol production from thick juice: a response surface methodology approach. Fuel 2012, 93:221-228.
    • (2012) Fuel , vol.93 , pp. 221-228
    • Grahovac, J.1    Dodić, J.2    Jokić, A.3    Dodić, S.4    Popov, S.5
  • 4
    • 77956190116 scopus 로고    scopus 로고
    • A hybrid neural approach to model batch fermentation of "ricotta cheese whey" to ethanol
    • Saraceno A., Curcio S., Calabrň V., Iorio G. A hybrid neural approach to model batch fermentation of "ricotta cheese whey" to ethanol. Comput. Chem. Eng. 2010, 34:1590-1596.
    • (2010) Comput. Chem. Eng. , vol.34 , pp. 1590-1596
    • Saraceno, A.1    Curcio, S.2    Calabrň, V.3    Iorio, G.4
  • 5
    • 84860886604 scopus 로고    scopus 로고
    • Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm
    • Gueguim Kana E.B., Oloke J.K., Lateef A., Adesiyan M.O. Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renew. Energ 2012, 46:276-281.
    • (2012) Renew. Energ , vol.46 , pp. 276-281
    • Gueguim Kana, E.B.1    Oloke, J.K.2    Lateef, A.3    Adesiyan, M.O.4
  • 6
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks
    • Olden J.D., Jackson D.A. Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model 2002, 154:135-150.
    • (2002) Ecol. Model , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 7
    • 36349013043 scopus 로고    scopus 로고
    • Ethanol fermentation technologies from sugar and starch feedstocks
    • Bai F.W., Anderson W.A., Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 2008, 26:89-105.
    • (2008) Biotechnol. Adv. , vol.26 , pp. 89-105
    • Bai, F.W.1    Anderson, W.A.2    Moo-Young, M.3
  • 8
    • 0026883301 scopus 로고
    • Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentations
    • Thatipamala R., Rohan S., Hill G.A. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentations. Biotechnol. Bioeng. 1992, 40:289-297.
    • (1992) Biotechnol. Bioeng. , vol.40 , pp. 289-297
    • Thatipamala, R.1    Rohan, S.2    Hill, G.A.3
  • 9
    • 0034106909 scopus 로고    scopus 로고
    • Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae
    • Ergun M., Mutlu S.F. Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresour. Technol. 2000, 73:251-255.
    • (2000) Bioresour. Technol. , vol.73 , pp. 251-255
    • Ergun, M.1    Mutlu, S.F.2
  • 10
    • 80053583995 scopus 로고    scopus 로고
    • Optimization of bioethanol production from intermediates of sugar beet processing by response surface methodology
    • Grahovac J., Dodić J., Dodić S., Popov S., Jokić A., Zavargo Z. Optimization of bioethanol production from intermediates of sugar beet processing by response surface methodology. Biomass Bioenerg. 2011, 35:4290-4296.
    • (2011) Biomass Bioenerg. , vol.35 , pp. 4290-4296
    • Grahovac, J.1    Dodić, J.2    Dodić, S.3    Popov, S.4    Jokić, A.5    Zavargo, Z.6
  • 11
    • 84861433816 scopus 로고    scopus 로고
    • An artificial neural network approach to modeling of alcoholic fermentation of thick juice from sugar beet processing
    • Jokić A., Grahovac J., Dodić J., Zavargo Z., Dodić S., Popov S., Vučurović D. An artificial neural network approach to modeling of alcoholic fermentation of thick juice from sugar beet processing. Hem. Ind. 2012, 66:211-221.
    • (2012) Hem. Ind. , vol.66 , pp. 211-221
    • Jokić, A.1    Grahovac, J.2    Dodić, J.3    Zavargo, Z.4    Dodić, S.5    Popov, S.6    Vučurović, D.7
  • 12
    • 0031172546 scopus 로고    scopus 로고
    • Application of artificial neural networks for crossflow microfiltration modelling: "black-box" and semi-physical approaches
    • Piron E., Latrille E., René F. Application of artificial neural networks for crossflow microfiltration modelling: "black-box" and semi-physical approaches. Comp. Chem. Eng. 1997, 21:1021-1030.
    • (1997) Comp. Chem. Eng. , vol.21 , pp. 1021-1030
    • Piron, E.1    Latrille, E.2    René, F.3
  • 13
    • 20444445001 scopus 로고    scopus 로고
    • Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions
    • Chellam S. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. J. Membr. Sci. 2005, 258:35-42.
    • (2005) J. Membr. Sci. , vol.258 , pp. 35-42
    • Chellam, S.1
  • 14
    • 33746770437 scopus 로고    scopus 로고
    • Dead-end filtration of yeast suspensions: correlating specific resistance and flux data using artificial neural networks
    • Ni Mhurchu J., Foley G. Dead-end filtration of yeast suspensions: correlating specific resistance and flux data using artificial neural networks. J. Membr. Sci. 2006, 281:325-333.
    • (2006) J. Membr. Sci. , vol.281 , pp. 325-333
    • Ni Mhurchu, J.1    Foley, G.2
  • 16
    • 78649741642 scopus 로고    scopus 로고
    • Bioethanol production from raw juice as intermediate of sugar beet processing: a response surface methodology approach
    • Popov S., Ranković J., Dodić J., Dodić S., Jokić A. Bioethanol production from raw juice as intermediate of sugar beet processing: a response surface methodology approach. Food Technol. Biotechnol. 2010, 48:376-383.
    • (2010) Food Technol. Biotechnol. , vol.48 , pp. 376-383
    • Popov, S.1    Ranković, J.2    Dodić, J.3    Dodić, S.4    Jokić, A.5
  • 17
    • 77952889835 scopus 로고    scopus 로고
    • The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process
    • Elmolla E.S., Chaudhuri M., Eltoukhy M.M. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J. Hazard Mater 2010, 179:127-134.
    • (2010) J. Hazard Mater , vol.179 , pp. 127-134
    • Elmolla, E.S.1    Chaudhuri, M.2    Eltoukhy, M.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.