메뉴 건너뛰기




Volumn 2, Issue January, 2014, Pages 1143-1151

Encoding high dimensional local features by sparse coding based fisher vectors

Author keywords

[No Author keywords available]

Indexed keywords

CODES (SYMBOLS); ENCODING (SYMBOLS); GAUSSIAN DISTRIBUTION; IMAGE CODING; INFORMATION SCIENCE; NEURAL NETWORKS; OBJECT RECOGNITION; VECTORS;

EID: 84937940212     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (76)

References (24)
  • 4
    • 84856626270 scopus 로고    scopus 로고
    • Modeling spatial layout with fisher vectors for image categorization
    • J. Krapac, J. J. Verbeek, and F. Jurie, "Modeling spatial layout with fisher vectors for image categorization." in Proc. IEEE Int. Conf. Comp. Vis., 2011, pp. 1487-1494.
    • (2011) Proc. IEEE Int. Conf. Comp. Vis. , pp. 1487-1494
    • Krapac, J.1    Verbeek, J.J.2    Jurie, F.3
  • 9
    • 84867882770 scopus 로고    scopus 로고
    • Beyond spatial pyramids: A new feature extraction framework with dense spatial sampling for image classification
    • S. Yan, X. Xu, D. Xu, S. Lin, and X. Li, "Beyond spatial pyramids: A new feature extraction framework with dense spatial sampling for image classification," in Proc. Eur. Conf. Comp. Vis., 2012, pp. 473-487.
    • (2012) Proc. Eur. Conf. Comp. Vis. , pp. 473-487
    • Yan, S.1    Xu, X.2    Xu, D.3    Lin, S.4    Li, X.5
  • 10
    • 85162387004 scopus 로고    scopus 로고
    • Hierarchical matching pursuit for image classification: Architecture and fast algorithms
    • L. Bo, X. Ren, and D. Fox, "Hierarchical matching pursuit for image classification: Architecture and fast algorithms," in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 2115-2123.
    • (2011) Proc. Adv. Neural Inf. Process. Syst. , pp. 2115-2123
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 11
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Machine Learning, Vol. 46, no. 1-3, pp. 131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 16
    • 84938217896 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik, "Multi-scale orderless pooling of deep convolutional activation features," in Proc. Eur. Conf. Comp. Vis., 2014.
    • (2014) Proc. Eur. Conf. Comp. Vis.
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 17
    • 84937944246 scopus 로고    scopus 로고
    • Y. Jia, "Caffe," 2014, https://github.com/BVLC/caffe.
    • (2014) Caffe
    • Jia, Y.1
  • 20
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • M. Pandey and S. Lazebnik, "Scene recognition and weakly supervised object localization with deformable part-based models," in Proc. IEEE Int. Conf. Comp. Vis., 2011, pp. 1307-1314.
    • (2011) Proc. IEEE Int. Conf. Comp. Vis. , pp. 1307-1314
    • Pandey, M.1    Lazebnik, S.2
  • 22
    • 84898819241 scopus 로고    scopus 로고
    • Deformable part descriptors for fine-grained recognition and attribute prediction
    • December
    • N. Zhang, R. Farrell, F. Iandola, and T. Darrell, "Deformable part descriptors for fine-grained recognition and attribute prediction," in Proc. IEEE Int. Conf. Comp. Vis., December 2013.
    • (2013) Proc. IEEE Int. Conf. Comp. Vis.
    • Zhang, N.1    Farrell, R.2    Iandola, F.3    Darrell, T.4
  • 23
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," in Proc. Int. Conf. Mach. Learn., 2010, pp. 399-406.
    • (2010) Proc. Int. Conf. Mach. Learn. , pp. 399-406
    • Gregor, K.1    LeCun, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.