메뉴 건너뛰기




Volumn 112, Issue , 2017, Pages 98-101

Types of approximation for probabilistic cognition: Sampling and variational

Author keywords

Probabilistic cognition; Rational process models; Sampling; Variational approximations

Indexed keywords

ALGORITHM; ARTICLE; BEHAVIORAL BIAS; COGNITION; COGNITIVE BIAS; KERNEL METHOD; MARKOV CHAIN; MEAN FIELD APPROXIMATION; MONTE CARLO METHOD; PREDICTION; PROBABILITY; BRAIN; COMPUTER SIMULATION; HUMAN; PHYSIOLOGY; STATISTICAL MODEL;

EID: 84937871458     PISSN: 02782626     EISSN: 10902147     Source Type: Journal    
DOI: 10.1016/j.bandc.2015.06.008     Document Type: Article
Times cited : (29)

References (40)
  • 2
    • 0000705894 scopus 로고
    • The adaptive nature of human categorization
    • Anderson, J.R., The adaptive nature of human categorization. Psychological Review 98:3 (1991), 409–429.
    • (1991) Psychological Review , vol.98 , Issue.3 , pp. 409-429
    • Anderson, J.R.1
  • 3
    • 84877784552 scopus 로고    scopus 로고
    • Complex inference in neural circuits with probabilistic population codes and topic models
    • F. Pereira C. Burges L. Bottou K. Weinberger Curran Associates, Inc.
    • Beck, J., Pouget, A., Heller, K.A., Complex inference in neural circuits with probabilistic population codes and topic models. Pereira, F., Burges, C., Bottou, L., Weinberger, K., (eds.) Advances in neural information processing systems, Vol. 25, 2012, Curran Associates, Inc., 3059–3067.
    • (2012) Advances in neural information processing systems , vol.25 , pp. 3059-3067
    • Beck, J.1    Pouget, A.2    Heller, K.A.3
  • 4
    • 33846516584 scopus 로고    scopus 로고
    • Pattern recognition and machine learning
    • Springer New York, NY
    • Bishop, C.M., Pattern recognition and machine learning. 2006, Springer, New York, NY.
    • (2006)
    • Bishop, C.M.1
  • 5
    • 55349147968 scopus 로고    scopus 로고
    • Detecting and predicting changes
    • Brown, S.D., Steyvers, M., Detecting and predicting changes. Cognitive Psychology 58 (2009), 49–67.
    • (2009) Cognitive Psychology , vol.58 , pp. 49-67
    • Brown, S.D.1    Steyvers, M.2
  • 6
    • 81355133300 scopus 로고    scopus 로고
    • Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons
    • Buesing, L., Bill, J., Nessler, B., Maass, W., Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons. PLoS Computational Biology, 7(11), 2011, e1002211.
    • (2011) PLoS Computational Biology , vol.7 , Issue.11 , pp. e1002211
    • Buesing, L.1    Bill, J.2    Nessler, B.3    Maass, W.4
  • 7
    • 85162044170 scopus 로고    scopus 로고
    • The pigeon as particle filter
    • J. Platt D. Koller Y. Singer S. Roweis MIT Press Cambridge, MA
    • Daw, N.D., Courville, A.C., The pigeon as particle filter. Platt, J., Koller, D., Singer, Y., Roweis, S., (eds.) Advances in neural information processing systems, Vol. 20, 2008, MIT Press, Cambridge, MA, 369–376.
    • (2008) Advances in neural information processing systems , vol.20 , pp. 369-376
    • Daw, N.D.1    Courville, A.C.2
  • 8
    • 70349155262 scopus 로고    scopus 로고
    • Semi-rational models of conditioning: The case of trial order
    • N. Chater M. Oaksford Oxford University Press Oxford, UK
    • Daw, N.D., Courville, A.C., Dayan, P., Semi-rational models of conditioning: The case of trial order. Chater, N., Oaksford, M., (eds.) The probabilistic mind, 2008, Oxford University Press, Oxford, UK, 431–452.
    • (2008) The probabilistic mind , pp. 431-452
    • Daw, N.D.1    Courville, A.C.2    Dayan, P.3
  • 9
    • 84992158722 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods in practice
    • Springer New York
    • Doucet, A., de Freitas, N., Gordon, N., Sequential Monte Carlo methods in practice. 2001, Springer, New York.
    • (2001)
    • Doucet, A.1    de Freitas, N.2    Gordon, N.3
  • 10
    • 76749113376 scopus 로고    scopus 로고
    • Statistically optimal perception and learning: From behavior to neural representations
    • Fiser, J., Berkes, P., Orbán, G., Lengyel, M., Statistically optimal perception and learning: From behavior to neural representations. Trends in Cognitive Sciences 14 (2010), 119–130.
    • (2010) Trends in Cognitive Sciences , vol.14 , pp. 119-130
    • Fiser, J.1    Berkes, P.2    Orbán, G.3    Lengyel, M.4
  • 11
    • 57149113922 scopus 로고    scopus 로고
    • Hierarchical models in the brain
    • Friston, K., Hierarchical models in the brain. PLoS Computational Biology, 4(11), 2008, e1000211.
    • (2008) PLoS Computational Biology , vol.4 , Issue.11 , pp. e1000211
    • Friston, K.1
  • 14
    • 84937937938 scopus 로고    scopus 로고
    • Fast sampling-based inference in balanced neuronal networks
    • Z. Ghahramani M. Welling C. Cortes N. Lawrence K. Weinberger Curran Associates, Inc.
    • Hennequin, G., Aitchison, L., Lengyel, M., Fast sampling-based inference in balanced neuronal networks. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., (eds.) Advances in neural information processing systems, Vol. 27, 2014, Curran Associates, Inc., 2240–2248.
    • (2014) Advances in neural information processing systems , vol.27 , pp. 2240-2248
    • Hennequin, G.1    Aitchison, L.2    Lengyel, M.3
  • 16
    • 84937897826 scopus 로고    scopus 로고
    • Neurons as Monte Carlo samplers: Bayesian inference and learning in spiking networks
    • Z. Ghahramani M. Welling C. Cortes N. Lawrence K. Weinberger Curran Associates, Inc.
    • Huang, Y., Rao, R.P., Neurons as Monte Carlo samplers: Bayesian inference and learning in spiking networks. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., (eds.) Advances in neural information processing systems, Vol. 27, 2014, Curran Associates, Inc., 1943–1951.
    • (2014) Advances in neural information processing systems , vol.27 , pp. 1943-1951
    • Huang, Y.1    Rao, R.P.2
  • 18
    • 1642553405 scopus 로고    scopus 로고
    • Bayesian integration in sensorimotor learning
    • Körding, K., Wolpert, D.M., Bayesian integration in sensorimotor learning. Nature 427 (2004), 244–247.
    • (2004) Nature , vol.427 , pp. 244-247
    • Körding, K.1    Wolpert, D.M.2
  • 21
    • 33750190656 scopus 로고    scopus 로고
    • Locally Bayesian learning with applications to retrospective revaluation and highlighting
    • Kruschke, J.K., Locally Bayesian learning with applications to retrospective revaluation and highlighting. Psychological Review 113 (2006), 677–699.
    • (2006) Psychological Review , vol.113 , pp. 677-699
    • Kruschke, J.K.1
  • 22
  • 23
    • 84908345348 scopus 로고    scopus 로고
    • Ensembles of spiking neurons with noise support optimal probabilistic inference in a dynamically changing environment
    • Legenstein, R., Maass, W., Ensembles of spiking neurons with noise support optimal probabilistic inference in a dynamically changing environment. PLoS Computational Biology, 10(10), 2014, e1003859.
    • (2014) PLoS Computational Biology , vol.10 , Issue.10 , pp. e1003859
    • Legenstein, R.1    Maass, W.2
  • 24
    • 84858769769 scopus 로고    scopus 로고
    • Modeling the effects of memory on human online sentence processing with particle filters
    • In D. Koller, D. Schuurmans, Y. Bengio & L. Bottou (Eds.)
    • Levy, R., Reali, F., & Griffiths, T. L. (2009). Modeling the effects of memory on human online sentence processing with particle filters. In D. Koller, D. Schuurmans, Y. Bengio & L. Bottou (Eds.), Advances in neural information processing systems (Vol. 21, pp. 937–944).
    • (2009) Advances in neural information processing systems , vol.21 , pp. 937-944
    • Levy, R.1    Reali, F.2    Griffiths, T.L.3
  • 26
    • 0023968459 scopus 로고
    • Problem structure and the use of base-rate information from experience
    • Medin, D.L., Edelson, S.M., Problem structure and the use of base-rate information from experience. Journal of Experimental Psychology: General 117 (1988), 68–85.
    • (1988) Journal of Experimental Psychology: General , vol.117 , pp. 68-85
    • Medin, D.L.1    Edelson, S.M.2
  • 29
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Department of Computer Science, University of Toronto
    • Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Tech. rep. no. CRG-TR-93-1. Department of Computer Science, University of Toronto.
    • (1993) Tech. rep. no. CRG-TR-93-1
    • Neal, R.M.1
  • 31
    • 78249247078 scopus 로고    scopus 로고
    • Rational approximations to the rational model of categorization
    • Sanborn, A.N., Griffiths, T.L., Navarro, D.J., Rational approximations to the rational model of categorization. Psychological Review 117 (2010), 1144–1167.
    • (2010) Psychological Review , vol.117 , pp. 1144-1167
    • Sanborn, A.N.1    Griffiths, T.L.2    Navarro, D.J.3
  • 32
    • 84882828246 scopus 로고    scopus 로고
    • Constraining bridges between levels of analysis: A computational justification for locally Bayesian learning
    • Sanborn, A.N., Silva, R., Constraining bridges between levels of analysis: A computational justification for locally Bayesian learning. Journal of Mathematical Psychology, 2013.
    • (2013) Journal of Mathematical Psychology
    • Sanborn, A.N.1    Silva, R.2
  • 33
    • 84946259125 scopus 로고
    • Forward and backward blocking in human contingency judgment
    • Shanks, D.R., Forward and backward blocking in human contingency judgment. Quarterly Journal of Experimental Psychology 97B (1985), 1–21.
    • (1985) Quarterly Journal of Experimental Psychology , vol.97B , pp. 1-21
    • Shanks, D.R.1
  • 34
    • 84858731044 scopus 로고    scopus 로고
    • Neural implementation of hierarchical Bayesian inference by importance sampling
    • Shi, L., & Griffiths, T. L. (2009). Neural implementation of hierarchical Bayesian inference by importance sampling. In Advances in neural information processing systems (pp. 1669–1677).
    • (2009) Advances in neural information processing systems , pp. 1669-1677
    • Shi, L.1    Griffiths, T.L.2
  • 36
    • 84959810873 scopus 로고
    • A behavioral model of rational choice
    • Simon, H.A., A behavioral model of rational choice. The Quarterly Journal of Economics 69:1 (1955), 99–118.
    • (1955) The Quarterly Journal of Economics , vol.69 , Issue.1 , pp. 99-118
    • Simon, H.A.1
  • 37
    • 33749528973 scopus 로고    scopus 로고
    • Combining priors and noisy visual cues in a rapid pointing task
    • Tassinari, H., Hudson, T.E., Landy, M.S., Combining priors and noisy visual cues in a rapid pointing task. The Journal of Neuroscience 26:40 (2006), 10154–10163.
    • (2006) The Journal of Neuroscience , vol.26 , Issue.40 , pp. 10154-10163
    • Tassinari, H.1    Hudson, T.E.2    Landy, M.S.3
  • 38
    • 0002425779 scopus 로고
    • Causal schemata in judgments under uncertainty
    • Lawrence Erlbaum
    • Tversky, A., Kahneman, D., Causal schemata in judgments under uncertainty. Progress in social psychology, 1978, Lawrence Erlbaum.
    • (1978) Progress in social psychology
    • Tversky, A.1    Kahneman, D.2
  • 39
    • 49949096946 scopus 로고    scopus 로고
    • The tractable cognition thesis
    • Van Rooij, I., The tractable cognition thesis. Cognitive Science 32:6 (2008), 939–984.
    • (2008) Cognitive Science , vol.32 , Issue.6 , pp. 939-984
    • Van Rooij, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.