메뉴 건너뛰기




Volumn 48, Issue 11, 2015, Pages 3673-3687

A novel validity index with dynamic cut-off for determining true clusters

Author keywords

Clustering; Dynamic cut off; Hierarchical agglomerative clustering; k means clustering; True clusters; Validity index

Indexed keywords

HIERARCHICAL CLUSTERING;

EID: 84937811846     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.04.023     Document Type: Article
Times cited : (16)

References (43)
  • 3
    • 84892062680 scopus 로고    scopus 로고
    • A survey of clustering data mining techniques
    • Jacob Kogan, Charles Nicholas, Marc Teboulle, Springer Berlin Heidelberg
    • Pavel Berkhin A survey of clustering data mining techniques Jacob Kogan, Charles Nicholas, Marc Teboulle, Grouping Multidimensional Data 2006 Springer Berlin Heidelberg 25 71
    • (2006) Grouping Multidimensional Data , pp. 25-71
    • Berkhin, P.1
  • 7
    • 84899089919 scopus 로고    scopus 로고
    • University Paris Ouest Lab Modal'X
    • Bernard Desgraupes, Clustering Indices, University Paris Ouest Lab Modal'X, 2013
    • (2013) Clustering Indices
    • Desgraupes, B.1
  • 9
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Chris Fraley, and Adrian E. Raftery How many clusters? Which clustering method? Answers via model-based cluster analysis Comput. J. 41 8 1998 578 588
    • (1998) Comput. J. , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 10
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Christophe Biernacki, Gilles Celeux, and Gérard Govaert Assessing a mixture model for clustering with the integrated completed likelihood IEEE Trans. Pattern Anal. Mach. Intell. 22 7 2000 719 725
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.7 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 13
    • 33845291376 scopus 로고    scopus 로고
    • Investigation on several model selection criteria for determining the number of cluster
    • Xuelei Hu, and Lei Xu Investigation on several model selection criteria for determining the number of cluster Neural Inf. Process. - Lett. Rev. 4 1 2004 1 10
    • (2004) Neural Inf. Process. - Lett. Rev. , vol.4 , Issue.1 , pp. 1-10
    • Hu, X.1    Xu, L.2
  • 14
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • research0036
    • Sandrine Dudoit, and Jane Fridlyand A prediction-based resampling method for estimating the number of clusters in a dataset Genome Biol. 3 7 2002 research0036
    • (2002) Genome Biol. , vol.3 , Issue.7
    • Dudoit, S.1    Fridlyand, J.2
  • 15
    • 0035514007 scopus 로고    scopus 로고
    • Resampling method for unsupervised estimation of cluster validity
    • Erel Levine, and Eytan Domany Resampling method for unsupervised estimation of cluster validity Neural Comput. 13 11 2001 2573 2593
    • (2001) Neural Comput. , vol.13 , Issue.11 , pp. 2573-2593
    • Levine, E.1    Domany, E.2
  • 16
    • 23744437299 scopus 로고    scopus 로고
    • On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples
    • G.J. McLachlan, and N. Khan On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples J. Multivar. Anal. 90 1 2004 90 105
    • (2004) J. Multivar. Anal. , vol.90 , Issue.1 , pp. 90-105
    • McLachlan, G.J.1    Khan, N.2
  • 18
    • 0347918435 scopus 로고    scopus 로고
    • A resampling approach to cluster validation
    • Physica-Verlag HD Heidelberg
    • V. Roth, T. Lange, M. Braun, and J. Buhmann A resampling approach to cluster validation in: Compstat 2002 Physica-Verlag HD Heidelberg 123 129
    • (2002) Compstat , pp. 123-129
    • Roth, V.1    Lange, T.2    Braun, M.3    Buhmann, J.4
  • 19
    • 33646944424 scopus 로고    scopus 로고
    • A method of predicting the number of clusters using Rand's statistic
    • Seong S. Chae, Janice L. DuBien, and William D. Warde A method of predicting the number of clusters using Rand's statistic Comput. Stat. Data Anal. 50 12 2006 3531 3546
    • (2006) Comput. Stat. Data Anal. , vol.50 , Issue.12 , pp. 3531-3546
    • Chae, S.S.1    DuBien, J.L.2    Warde, W.D.3
  • 20
    • 33947159574 scopus 로고    scopus 로고
    • Evaluation of stability of k-means cluster ensembles with respect to random initialization
    • Ludmila I. Kuncheva, and Dmitry P. Vetrov Evaluation of stability of k-means cluster ensembles with respect to random initialization IEEE Trans. Pattern Anal. Mach. Intell. 28 11 2006 1798 1808
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.11 , pp. 1798-1808
    • Kuncheva, L.I.1    Vetrov, D.P.2
  • 21
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data Mach. Learn. 52 1-2 2003 91 118
    • (2003) Mach. Learn. , vol.52 , Issue.1-2 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 23
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a dataset
    • Catherine A. Sugar, and Gareth M. James Finding the number of clusters in a dataset J. Am. Stat. Assoc. 98 463 2003 750 763
    • (2003) J. Am. Stat. Assoc. , vol.98 , Issue.463 , pp. 750-763
    • Sugar, C.A.1    James, G.M.2
  • 24
    • 57049189677 scopus 로고    scopus 로고
    • Knee point detection in BIC for detecting the number of clusters
    • Springer Berlin, Heidelberg
    • Qinpei Zhao, Ville Hautamaki, and Pasi Fränti Knee point detection in BIC for detecting the number of clusters Advanced Concepts for Intelligent Vision Systems 2008 Springer Berlin, Heidelberg 664 673
    • (2008) Advanced Concepts for Intelligent Vision Systems , pp. 664-673
    • Zhao, Q.1    Hautamaki, V.2    Fränti, P.3
  • 25
    • 84861436095 scopus 로고    scopus 로고
    • Internal versus external cluster validation indexes
    • Eréndira Rendón, and et al. Internal versus external cluster validation indexes Int. J. Comput. Commun. 5 1 2011 27 34
    • (2011) Int. J. Comput. Commun. , vol.5 , Issue.1 , pp. 27-34
    • Rendón, E.1
  • 26
    • 84866018958 scopus 로고    scopus 로고
    • An extensive comparative study of cluster validity indices
    • Olatz Arbelaitz, and et al. An extensive comparative study of cluster validity indices Pattern Recognit. 46 1 2013 243 256
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 243-256
    • Arbelaitz, O.1
  • 28
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference understanding AIC and BIC in model selection
    • Kenneth P. Burnham, and David R. Anderson Multimodel inference understanding AIC and BIC in model selection Sociol. Methods Res. 33 2 2004 261 304
    • (2004) Sociol. Methods Res. , vol.33 , Issue.2 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 30
    • 0035434818 scopus 로고    scopus 로고
    • Subspace information criterion for model selection
    • Masashi Sugiyama, and Hidemitsu Ogawa Subspace information criterion for model selection Neural Comput. 13 8 2001 1863 1889
    • (2001) Neural Comput. , vol.13 , Issue.8 , pp. 1863-1889
    • Sugiyama, M.1    Ogawa, H.2
  • 31
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 Years beyond K-means
    • Anil K. Jain Data clustering: 50 years beyond K-means Pattern Recognit. Lett. 31 8 2010 651 666
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 33
    • 84975794900 scopus 로고    scopus 로고
    • The CLUSTER Procedure: Clustering Methods
    • SAS Institute, Cary, NC, USA
    • The CLUSTER Procedure: Clustering Methods, SAS/STAT 9.2 Users Guide, second edition, SAS Institute, Cary, NC, USA.
    • SAS/STAT 9.2 Users Guide, Second Edition
  • 36
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Glenn W. Milligan, and Martha C. Cooper An examination of procedures for determining the number of clusters in a data set Psychometrika 50 2 1985 159 179
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 37
    • 0001518855 scopus 로고
    • A general statistical framework for assessing categorical clustering in free recall
    • Lawrence J. Hubert, and Joel R. Levin A general statistical framework for assessing categorical clustering in free recall Psychol. Bull. 83 6 1976 1072
    • (1976) Psychol. Bull. , vol.83 , Issue.6 , pp. 1072
    • Hubert, L.J.1    Levin, J.R.2
  • 39
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • J.C. Dunn Well separated clusters and optimal fuzzy partitions J. Cybern. 4 1974 95 104
    • (1974) J. Cybern. , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 40
    • 0023905024 scopus 로고
    • A criterion for determining the number of groups in a data set using sum of squares clustering
    • W.J. Krzanowski, and Y.T. Lai A criterion for determining the number of groups in a data set using sum of squares clustering Biometrics 1988 23 34
    • (1988) Biometrics , pp. 23-34
    • Krzanowski, W.J.1    Lai, Y.T.2
  • 41
    • 0348108148 scopus 로고    scopus 로고
    • Validity index for crisp and fuzzy clusters
    • Malay K. Pakhira, Sanghamitra Bandyopadhyay, and Ujjwal Maulik Validity index for crisp and fuzzy clusters Pattern Recognit. 37 3 2004 487 501
    • (2004) Pattern Recognit. , vol.37 , Issue.3 , pp. 487-501
    • Pakhira, M.K.1    Bandyopadhyay, S.2    Maulik, U.3
  • 43
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis J. Comput. Appl. Math. 20 1987 53 65
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.