메뉴 건너뛰기




Volumn , Issue , 2004, Pages 576-584

Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; L METHOD; LEARNING PROCESSES; SEGMENTATION ALGORITHMS;

EID: 16244377091     PISSN: 10823409     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICTAI.2004.50     Document Type: Conference Paper
Times cited : (610)

References (24)
  • 1
    • 84949215570 scopus 로고    scopus 로고
    • The kindest cut: Minimum message length segmentation
    • Baxter, R. & J. Oliver. The Kindest Cut: Minimum Message Length Segmentation. In Proc. ALT, pp. 83-90, 1996.
    • (1996) Proc. ALT , pp. 83-90
    • Baxter, R.1    Oliver, J.2
  • 2
    • 0035788889 scopus 로고    scopus 로고
    • A robust and scalable clustering algorithm for mixed type attributes in large database environment
    • Chiu, T., D. Fang, J. Chen, Y. Wang & C. Jeris. A Robust and Scalable Clustering Algorithm for Mixed Type Attributes in Large Database Environment. In Proc. SIGKDD, pp. 263-268, 2001.
    • (2001) Proc. SIGKDD , pp. 263-268
    • Chiu, T.1    Fang, D.2    Chen, J.3    Wang, Y.4    Jeris, C.5
  • 3
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Ester, M., H. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proc. KDD, pp. 226-231, 1996.
    • (1996) Proc. KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.2    Sander, J.3    Xu, X.4
  • 4
    • 78149337520 scopus 로고    scopus 로고
    • A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets
    • Foss, A. & A. Zaïane. A Parameterless Method for Efficiently Discovering Clusters of Arbitrary Shape in Large Datasets. In Proc. ICDM, 2002.
    • (2002) Proc. ICDM
    • Foss, A.1    Zaïane, A.2
  • 5
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? which clustering method? Answers via model-based cluster analysis
    • Fraley, C. & E. Raftery. How many clusters? Which clustering method? Answers via model-based Cluster Analysis. In Computer Journal, vol. 41, pp. 578-588, 1998.
    • (1998) Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, E.2
  • 7
    • 0034095177 scopus 로고    scopus 로고
    • An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome
    • Harris, S., D. Hess & J. Venegas. An Objective Analysis of the Pressure-Volume Curve in the Acute Respiratory Distress Syndrome. In American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2, pp. 432-439, 2000.
    • (2000) American Journal of Respiratory and Critical Care Medicine , vol.161 , Issue.2 , pp. 432-439
    • Harris, S.1    Hess, D.2    Venegas, J.3
  • 8
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the principle of minimum description length
    • Hansen, M. & B. Yu. Model Selection and the Principle of Minimum Description Length. In JASA, vol. 96, pp.746-774, 2001.
    • (2001) JASA , vol.96 , pp. 746-774
    • Hansen, M.1    Yu, B.2
  • 9
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • Hinneburg A. & D. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Proc. KDD, pp. 58-65, 1998.
    • (1998) Proc. KDD , pp. 58-65
    • Hinneburg, A.1    Keim, D.2
  • 10
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: A hierarchical clustering algorithm using dynamic modeling
    • Karypis, O., E. Han & V. Kumar. Chameleon: A Hierarchical Clustering Algorithm Using Dynamic Modeling. In IEEE Computer, 32(8) pp. 68-75, 1999.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, O.1    Han, E.2    Kumar, V.3
  • 11
    • 33845594450 scopus 로고    scopus 로고
    • An online algorithm for segmenting time series
    • Keogh, E., S. Chu, D. Hart & M. Pazanni. An Online Algorithm for Segmenting Time Series. In Proc. ICDM, pp. 289-296, 2001.
    • (2001) Proc. ICDM , pp. 289-296
    • Keogh, E.1    Chu, S.2    Hart, D.3    Pazanni, M.4
  • 13
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti, S., T. Pablo, J. Mesirov & T. Golub. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. In Machine Learning, vol. 52, pp. 91-118, 2003.
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Pablo, T.2    Mesirov, J.3    Golub, T.4
  • 14
    • 0003136237 scopus 로고
    • Efficient and effective clustering method for spatial data mining
    • Ng R., J. Han. Efficient and Effective Clustering Method for Spatial Data Mining. In Proc. VLDB, pp. 144-155, 1994.
    • (1994) Proc. VLDB , pp. 144-155
    • Ng, R.1    Han, J.2
  • 15
  • 16
    • 10044227402 scopus 로고    scopus 로고
    • Learning states and rules for time series anomaly detection
    • Salvador, S., P. Chan & J. Brodie. Learning States and Rules for Time Series Anomaly Detection. In Proc. FLAIRS, pp. 300-305, 2004.
    • (2004) Proc. FLAIRS , pp. 300-305
    • Salvador, S.1    Chan, P.2    Brodie, J.3
  • 17
    • 0003052357 scopus 로고    scopus 로고
    • WaveCluster: A multi-resolution clustering approach for very large spatial databases
    • Seikholeslami G., S. Chatterjee, & A Zhang. WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases. Proc. VLDB, pp. 428-439, 1998.
    • (1998) Proc. VLDB , pp. 428-439
    • Seikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 18
    • 0242581819 scopus 로고    scopus 로고
    • Clustering using Monte-Carlo cross-validation
    • Smyth, P. Clustering Using Monte-Carlo Cross-Validation. In Proc. KDD, pp.126-133, 1996.
    • (1996) Proc. KDD , pp. 126-133
    • Smyth, P.1
  • 19
    • 0035434818 scopus 로고    scopus 로고
    • Subspace information criterion for model selection
    • Sugiyama, M. & H. Ogawa. Subspace Information Criterion for Model Selection. In Neural Computation, vol. 13, no. 8, pp. 1863-1889, 2001.
    • (2001) Neural Computation , vol.13 , Issue.8 , pp. 1863-1889
    • Sugiyama, M.1    Ogawa, H.2
  • 20
    • 0012452913 scopus 로고    scopus 로고
    • Cluster validation by prediction strength
    • 2001-21, Dept. of Biostatistics, Stanford Univ
    • Tibshirani, R., G. Walther, D. Botstein & P. Brown. Cluster Validation by Prediction Strength, Tech. Report, 2001-21, Dept. of Biostatistics, Stanford Univ, 2001.
    • (2001) Tech. Report
    • Tibshirani, R.1    Walther, G.2    Botstein, D.3    Brown, P.4
  • 21
    • 33747881616 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the Gap statistic
    • Tibshirani, R., G. Walther & T. Hastie. Estimating the number of clusters in a dataset via the Gap statistic. In JRSSB, 2003.
    • (2003) JRSSB
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 22
    • 1642433203 scopus 로고    scopus 로고
    • Estimating the number of segments in time series data using permutation tests
    • Vasko, K. & T. Toivonen. Estimating the Number of Segments in Time Series Data Using Permutation Tests. In Proc. ICDM, pp. 466-473, 2002.
    • (2002) Proc. ICDM , pp. 466-473
    • Vasko, K.1    Toivonen, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.