-
1
-
-
84949215570
-
The kindest cut: Minimum message length segmentation
-
Baxter, R. & J. Oliver. The Kindest Cut: Minimum Message Length Segmentation. In Proc. ALT, pp. 83-90, 1996.
-
(1996)
Proc. ALT
, pp. 83-90
-
-
Baxter, R.1
Oliver, J.2
-
2
-
-
0035788889
-
A robust and scalable clustering algorithm for mixed type attributes in large database environment
-
Chiu, T., D. Fang, J. Chen, Y. Wang & C. Jeris. A Robust and Scalable Clustering Algorithm for Mixed Type Attributes in Large Database Environment. In Proc. SIGKDD, pp. 263-268, 2001.
-
(2001)
Proc. SIGKDD
, pp. 263-268
-
-
Chiu, T.1
Fang, D.2
Chen, J.3
Wang, Y.4
Jeris, C.5
-
3
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Ester, M., H. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proc. KDD, pp. 226-231, 1996.
-
(1996)
Proc. KDD
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.2
Sander, J.3
Xu, X.4
-
4
-
-
78149337520
-
A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets
-
Foss, A. & A. Zaïane. A Parameterless Method for Efficiently Discovering Clusters of Arbitrary Shape in Large Datasets. In Proc. ICDM, 2002.
-
(2002)
Proc. ICDM
-
-
Foss, A.1
Zaïane, A.2
-
5
-
-
0032269108
-
How many clusters? which clustering method? Answers via model-based cluster analysis
-
Fraley, C. & E. Raftery. How many clusters? Which clustering method? Answers via model-based Cluster Analysis. In Computer Journal, vol. 41, pp. 578-588, 1998.
-
(1998)
Computer Journal
, vol.41
, pp. 578-588
-
-
Fraley, C.1
Raftery, E.2
-
7
-
-
0034095177
-
An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome
-
Harris, S., D. Hess & J. Venegas. An Objective Analysis of the Pressure-Volume Curve in the Acute Respiratory Distress Syndrome. In American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2, pp. 432-439, 2000.
-
(2000)
American Journal of Respiratory and Critical Care Medicine
, vol.161
, Issue.2
, pp. 432-439
-
-
Harris, S.1
Hess, D.2
Venegas, J.3
-
8
-
-
0141879236
-
Model selection and the principle of minimum description length
-
Hansen, M. & B. Yu. Model Selection and the Principle of Minimum Description Length. In JASA, vol. 96, pp.746-774, 2001.
-
(2001)
JASA
, vol.96
, pp. 746-774
-
-
Hansen, M.1
Yu, B.2
-
9
-
-
85140527321
-
An efficient approach to clustering in large multimedia databases with noise
-
Hinneburg A. & D. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Proc. KDD, pp. 58-65, 1998.
-
(1998)
Proc. KDD
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.2
-
10
-
-
0032686723
-
Chameleon: A hierarchical clustering algorithm using dynamic modeling
-
Karypis, O., E. Han & V. Kumar. Chameleon: A Hierarchical Clustering Algorithm Using Dynamic Modeling. In IEEE Computer, 32(8) pp. 68-75, 1999.
-
(1999)
IEEE Computer
, vol.32
, Issue.8
, pp. 68-75
-
-
Karypis, O.1
Han, E.2
Kumar, V.3
-
11
-
-
33845594450
-
An online algorithm for segmenting time series
-
Keogh, E., S. Chu, D. Hart & M. Pazanni. An Online Algorithm for Segmenting Time Series. In Proc. ICDM, pp. 289-296, 2001.
-
(2001)
Proc. ICDM
, pp. 289-296
-
-
Keogh, E.1
Chu, S.2
Hart, D.3
Pazanni, M.4
-
13
-
-
0038724494
-
Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
-
Monti, S., T. Pablo, J. Mesirov & T. Golub. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. In Machine Learning, vol. 52, pp. 91-118, 2003.
-
(2003)
Machine Learning
, vol.52
, pp. 91-118
-
-
Monti, S.1
Pablo, T.2
Mesirov, J.3
Golub, T.4
-
14
-
-
0003136237
-
Efficient and effective clustering method for spatial data mining
-
Ng R., J. Han. Efficient and Effective Clustering Method for Spatial Data Mining. In Proc. VLDB, pp. 144-155, 1994.
-
(1994)
Proc. VLDB
, pp. 144-155
-
-
Ng, R.1
Han, J.2
-
15
-
-
0347918435
-
A resampling approach to cluster validation
-
Roth, V., T. Lange, M. Braun & J. Buhmann. A Resampling Approach to Cluster Validation. In Proc. COMPSTAT, pp. 123-129, 2002.
-
(2002)
Proc. COMPSTAT
, pp. 123-129
-
-
Roth, V.1
Lange, T.2
Braun, M.3
Buhmann, J.4
-
16
-
-
10044227402
-
Learning states and rules for time series anomaly detection
-
Salvador, S., P. Chan & J. Brodie. Learning States and Rules for Time Series Anomaly Detection. In Proc. FLAIRS, pp. 300-305, 2004.
-
(2004)
Proc. FLAIRS
, pp. 300-305
-
-
Salvador, S.1
Chan, P.2
Brodie, J.3
-
17
-
-
0003052357
-
WaveCluster: A multi-resolution clustering approach for very large spatial databases
-
Seikholeslami G., S. Chatterjee, & A Zhang. WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases. Proc. VLDB, pp. 428-439, 1998.
-
(1998)
Proc. VLDB
, pp. 428-439
-
-
Seikholeslami, G.1
Chatterjee, S.2
Zhang, A.3
-
18
-
-
0242581819
-
Clustering using Monte-Carlo cross-validation
-
Smyth, P. Clustering Using Monte-Carlo Cross-Validation. In Proc. KDD, pp.126-133, 1996.
-
(1996)
Proc. KDD
, pp. 126-133
-
-
Smyth, P.1
-
19
-
-
0035434818
-
Subspace information criterion for model selection
-
Sugiyama, M. & H. Ogawa. Subspace Information Criterion for Model Selection. In Neural Computation, vol. 13, no. 8, pp. 1863-1889, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.8
, pp. 1863-1889
-
-
Sugiyama, M.1
Ogawa, H.2
-
20
-
-
0012452913
-
Cluster validation by prediction strength
-
2001-21, Dept. of Biostatistics, Stanford Univ
-
Tibshirani, R., G. Walther, D. Botstein & P. Brown. Cluster Validation by Prediction Strength, Tech. Report, 2001-21, Dept. of Biostatistics, Stanford Univ, 2001.
-
(2001)
Tech. Report
-
-
Tibshirani, R.1
Walther, G.2
Botstein, D.3
Brown, P.4
-
21
-
-
33747881616
-
Estimating the number of clusters in a dataset via the Gap statistic
-
Tibshirani, R., G. Walther & T. Hastie. Estimating the number of clusters in a dataset via the Gap statistic. In JRSSB, 2003.
-
(2003)
JRSSB
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
22
-
-
1642433203
-
Estimating the number of segments in time series data using permutation tests
-
Vasko, K. & T. Toivonen. Estimating the Number of Segments in Time Series Data Using Permutation Tests. In Proc. ICDM, pp. 466-473, 2002.
-
(2002)
Proc. ICDM
, pp. 466-473
-
-
Vasko, K.1
Toivonen, T.2
|