메뉴 건너뛰기




Volumn , Issue , 2013, Pages 413-423

Ovarian tumor characterization and classification using ultrasound: A new online paradigm

Author keywords

Characterization; Classification; Computer aided diagnosis; Higher order spectra; Ovarian tumor; Texture features

Indexed keywords

APPLICATION PROGRAMS; CHARACTERIZATION; CLASSIFICATION (OF INFORMATION); DATA MINING; DECISION TREES; MEDICAL IMAGING; TUMORS; ULTRASONIC APPLICATIONS;

EID: 84937761309     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4614-8633-6_26     Document Type: Chapter
Times cited : (8)

References (46)
  • 1
    • 84955413132 scopus 로고    scopus 로고
    • Accessed 4 Oct 2011
    • NCI (National Cancer Institute) on ovarian cancer. Information website http://www.cancer.gov/cancertopics/types/ovarian. Accessed 4 Oct 2011.
  • 2
  • 3
    • 35548994023 scopus 로고    scopus 로고
    • Fifty years of progress in gynecologic ultrasound
    • Zaidi SI. Fifty years of progress in gynecologic ultrasound. Int J Gynaecol Obstet. 2007;99:195–7.
    • (2007) Int J Gynaecol Obstet , vol.99 , pp. 195-197
    • Zaidi, S.I.1
  • 4
    • 0033983672 scopus 로고    scopus 로고
    • Performance of ultrasound as a second line test to serum CA125 in ovarian cancer screening
    • Menon U, Talaat A, Rosenthal AN, et al. Performance of ultrasound as a second line test to serum CA125 in ovarian cancer screening. BJOG. 2000;107:165–9.
    • (2000) BJOG , vol.107 , pp. 165-169
    • Menon, U.1    Talaat, A.2    Rosenthal, A.N.3
  • 5
    • 1942533386 scopus 로고    scopus 로고
    • Benign ovarian tumors with solid and cystic components that mimic malignancy
    • Kim KA, Park CM, Lee JH, et al. Benign ovarian tumors with solid and cystic components that mimic malignancy. AJR Am J Roentgenol. 2004;182:1259–65.
    • (2004) AJR am J Roentgenol , vol.182 , pp. 1259-1265
    • Kim, K.A.1    Park, C.M.2    Lee, J.H.3
  • 13
    • 45249116785 scopus 로고    scopus 로고
    • Ovarian cancer diagnosis with complementary learning fuzzy neural network
    • Tan TZ, Quek C, Ng GS, Razvi K. Ovarian cancer diagnosis with complementary learning fuzzy neural network. Artif Intell Med. 2008;43:207–22.
    • (2008) Artif Intell Med , vol.43 , pp. 207-222
    • Tan, T.Z.1    Quek, C.2    Ng, G.S.3    Razvi, K.4
  • 15
    • 77949413456 scopus 로고    scopus 로고
    • Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data
    • Tang KL, Li TH, Xiong WW, Chen K. Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data. BMC Bioinformatics. 2010;11:109.
    • (2010) BMC Bioinformatics , vol.11 , pp. 109
    • Tang, K.L.1    Li, T.H.2    Xiong, W.W.3    Chen, K.4
  • 16
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns serum to identify ovarian cancer
    • Petricoin F. Use of proteomic patterns serum to identify ovarian cancer. Lancet. 2002;359:572–7.
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin, F.1
  • 17
    • 0032893411 scopus 로고    scopus 로고
    • Sonographic prediction of malignancy in adnexal masses using an artificial neural network
    • Tailor A, Jurkovic D, Bourne TH, Collins WP, Campbell S. Sonographic prediction of malignancy in adnexal masses using an artificial neural network. Br J Obstet Gynaecol. 1999;106:21–30.
    • (1999) Br J Obstet Gynaecol , vol.106 , pp. 21-30
    • Tailor, A.1    Jurkovic, D.2    Bourne, T.H.3    Collins, W.P.4    Campbell, S.5
  • 18
    • 0030799448 scopus 로고    scopus 로고
    • Knowledge-based system ADNEXPERT to assist the sonographic diagnosis of adnexal tumors
    • Brüning J, Becker R, Entezami M, Loy V, Vonk R, Weitzel H, et al. Knowledge-based system ADNEXPERT to assist the sonographic diagnosis of adnexal tumors. Methods Inf Med. 1997;36:201–6.
    • (1997) Methods Inf Med , vol.36 , pp. 201-206
    • Brüning, J.1    Becker, R.2    Entezami, M.3    Loy, V.4    Vonk, R.5    Weitzel, H.6
  • 19
    • 0032926288 scopus 로고    scopus 로고
    • Predicting ovarian malignancy: Application of artificial neural networks to transvaginal and color Doppler flow US
    • Biagiotti R, Desii C, Vanzi E, Gacci G. Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US. Radiology. 1999;210:399–403.
    • (1999) Radiology , vol.210 , pp. 399-403
    • Biagiotti, R.1    Desii, C.2    Vanzi, E.3    Gacci, G.4
  • 20
    • 0344413027 scopus 로고    scopus 로고
    • An automatic approach for morphological analysis and malignancy evaluation of ovarian masses using B-scans
    • Zimmer Y, Tepper R, Akselrod S. An automatic approach for morphological analysis and malignancy evaluation of ovarian masses using B-scans. Ultrasound Med Biol. 2003;29:1561–70.
    • (2003) Ultrasound Med Biol , vol.29 , pp. 1561-1570
    • Zimmer, Y.1    Tepper, R.2    Akselrod, S.3
  • 21
    • 77957939537 scopus 로고    scopus 로고
    • A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: Results of a multicentre validation study
    • Lucidarme O, Akakpo JP, Granberg S, et al. A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: results of a multicentre validation study. Eur Radiol. 2010;20:1822–30.
    • (2010) Eur Radiol , vol.20 , pp. 1822-1830
    • Lucidarme, O.1    Akakpo, J.P.2    Granberg, S.3
  • 22
  • 23
    • 0033042127 scopus 로고    scopus 로고
    • Three-dimensional ultrasonographic evaluation of ovarian tumours: A preliminary study
    • Hata T, Yanagihara T, Hayashi K, Yamashiro C, et al. Three-dimensional ultrasonographic evaluation of ovarian tumours: a preliminary study. Hum Reprod. 1999;14:858–61.
    • (1999) Hum Reprod , vol.14 , pp. 858-861
    • Hata, T.1    Yanagihara, T.2    Hayashi, K.3    Yamashiro, C.4
  • 24
    • 35549012270 scopus 로고    scopus 로고
    • Three-dimensional ultrasound and three-dimensional power Doppler in the assessment of ovarian tumors
    • Laban M, Metawee H, Elyan A, Kamal M, Kamel M, Mansour G. Three-dimensional ultrasound and three-dimensional power Doppler in the assessment of ovarian tumors. Int J Gynaecol Obstet. 2007;99:201–5.
    • (2007) Int J Gynaecol Obstet , vol.99 , pp. 201-205
    • Laban, M.1    Metawee, H.2    Elyan, A.3    Kamal, M.4    Kamel, M.5    Mansour, G.6
  • 25
    • 0034931954 scopus 로고    scopus 로고
    • Three-dimensional power Doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction
    • Cohen LS, Escobar PF, Scharm C, Glimco B, Fishman DA. Three-dimensional power Doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction. Gynecol Oncol. 2001;82:40–8.
    • (2001) Gynecol Oncol , vol.82 , pp. 40-48
    • Cohen, L.S.1    Escobar, P.F.2    Scharm, C.3    Glimco, B.4    Fishman, D.A.5
  • 27
    • 79954852361 scopus 로고    scopus 로고
    • Ultrasound in ovarian carcinoma
    • Reznek R, editor, Cambridge: Cambridge University Press
    • Webb JAW. Ultrasound in ovarian carcinoma. In: Reznek R, editor. Cancer of the ovary. Cambridge: Cambridge University Press; 2006. p. 94–111.
    • (2006) Cancer of the Ovary , pp. 94-111
    • Webb, J.A.W.1
  • 30
    • 0346724802 scopus 로고    scopus 로고
    • Content-based image classification using a neural network
    • Park SB, Lee JW, Kim SK. Content-based image classification using a neural network. Pattern Recogn Letters. 2004;25:287–300.
    • (2004) Pattern Recogn Letters , vol.25 , pp. 287-300
    • Park, S.B.1    Lee, J.W.2    Kim, S.K.3
  • 32
    • 0026882583 scopus 로고
    • Fractal dimension in the analysis of medical images
    • Fortin C. Fractal dimension in the analysis of medical images. IEEE Eng Med Biol. 1992;11:65–71.
    • (1992) IEEE Eng Med Biol , vol.11 , pp. 65-71
    • Fortin, C.1
  • 34
    • 0032027145 scopus 로고    scopus 로고
    • Fractal dimension estimation for texture images: A parallel approach
    • Biswas MK, Ghose T, Guha S, Biswas PK. Fractal dimension estimation for texture images: a parallel approach. Pattern Recogn Letters. 1998;19:309–13.
    • (1998) Pattern Recogn Letters , vol.19 , pp. 309-313
    • Biswas, M.K.1    Ghose, T.2    Guha, S.3    Biswas, P.K.4
  • 36
    • 0030244413 scopus 로고    scopus 로고
    • Statistical methods to compare the texture features of machined surfaces
    • Ramana KV, Ramamoorthy B. Statistical methods to compare the texture features of machined surfaces. Pattern Recogn. 1996;29: 1447–59.
    • (1996) Pattern Recogn , vol.29 , pp. 1447-1459
    • Ramana, K.V.1    Ramamoorthy, B.2
  • 37
    • 0001416258 scopus 로고
    • Texture classification using gray level run length
    • Galloway MM. Texture classification using gray level run length. Comput Graph Image Process. 1975;4:172–9.
    • (1975) Comput Graph Image Process , vol.4 , pp. 172-179
    • Galloway, M.M.1
  • 39
    • 84856227784 scopus 로고    scopus 로고
    • Application of higher order spectra to identify epileptic EEG
    • Chua KC, Chandran V, Acharya UR, Lim C. Application of higher order spectra to identify epileptic EEG. J Med Syst. 2011;35(6): 1563–71. doi:10.1007/s10916-010-9433-z.
    • (2011) J Med Syst , vol.35 , Issue.6 , pp. 1563-1571
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.4
  • 40
    • 76449108621 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using nonlinear parameters
    • Acharya UR, Chua KC, Lim TC, Dorithy DL, Suri JS. Automatic identification of epileptic EEG signals using nonlinear parameters. J Med Mech Biol. 2009;9:539–53.
    • (2009) J Med Mech Biol , vol.9 , pp. 539-553
    • Acharya, U.R.1    Chua, K.C.2    Lim, T.C.3    Dorithy, D.L.4    Suri, J.S.5
  • 41
  • 43
    • 84971232387 scopus 로고
    • Guinness, gosset, fisher, and small samples
    • Box JF. Guinness, gosset, fisher, and small samples. Stat Sci. 1987;2:45–52.
    • (1987) Stat Sci , vol.2 , pp. 45-52
    • Box, J.F.1
  • 46
    • 70350516161 scopus 로고    scopus 로고
    • Can computer-aided detection be detrimental to mammographic interpretation?
    • Philpotts LE. Can computer-aided detection be detrimental to mammographic interpretation? Radiology. 2009;253(1):17–22.
    • (2009) Radiology , vol.253 , Issue.1 , pp. 17-22
    • Philpotts, L.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.