-
1
-
-
0242693166
-
How bacteria assemble flagella
-
Macnab R.M. How bacteria assemble flagella. Annu. Rev. Microbiol. 2003, 57:77-100.
-
(2003)
Annu. Rev. Microbiol.
, vol.57
, pp. 77-100
-
-
Macnab, R.M.1
-
2
-
-
2642559479
-
Self-assembly and type III protein export of the bacterial flagellum
-
Minamino T., Namba K. Self-assembly and type III protein export of the bacterial flagellum. J. Mol. Microbiol. Biotechnol. 2004, 7:5-17.
-
(2004)
J. Mol. Microbiol. Biotechnol.
, vol.7
, pp. 5-17
-
-
Minamino, T.1
Namba, K.2
-
3
-
-
57049169137
-
Molecular motors of the bacterial flagella
-
Minamino T., et al. Molecular motors of the bacterial flagella. Curr. Opin. Struct. Biol. 2008, 18:693-701.
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, pp. 693-701
-
-
Minamino, T.1
-
4
-
-
0028274712
-
Isolation, characterization, and structure of bacterial flagellar motors containing the switch complex
-
Francis N.R., et al. Isolation, characterization, and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol. 1994, 235:1261-1270.
-
(1994)
J. Mol. Biol.
, vol.235
, pp. 1261-1270
-
-
Francis, N.R.1
-
5
-
-
1442326719
-
Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis
-
Suzuki H., et al. Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. J. Mol. Biol. 2004, 337:105-113.
-
(2004)
J. Mol. Biol.
, vol.337
, pp. 105-113
-
-
Suzuki, H.1
-
6
-
-
33749608423
-
The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium
-
Thomas D.R., et al. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J. Bacteriol. 2006, 188:7039-7048.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 7039-7048
-
-
Thomas, D.R.1
-
7
-
-
0026423928
-
Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid
-
Akiba T., et al. Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid. Science 1991, 252:1544-1546.
-
(1991)
Science
, vol.252
, pp. 1544-1546
-
-
Akiba, T.1
-
8
-
-
77955924240
-
Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching
-
Lee L.K., et al. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 2010, 466:996-1000.
-
(2010)
Nature
, vol.466
, pp. 996-1000
-
-
Lee, L.K.1
-
9
-
-
79958063382
-
Structural insight into the rotational switching mechanism of the bacterial flagellar motor
-
Minamino T., et al. Structural insight into the rotational switching mechanism of the bacterial flagellar motor. PLoS Biol. 2011, 9:e1000616.
-
(2011)
PLoS Biol.
, vol.9
, pp. e1000616
-
-
Minamino, T.1
-
10
-
-
77954921897
-
Signal-dependent turnover of the bacterial flagellar switch protein FliM
-
Delalez N.J., et al. Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11347-11351.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11347-11351
-
-
Delalez, N.J.1
-
11
-
-
77949875898
-
Exchange of rotor components in functioning bacterial flagellar motor
-
Fukuoka H., et al. Exchange of rotor components in functioning bacterial flagellar motor. Biochem. Biophys. Res. Commun. 2010, 394:130-135.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.394
, pp. 130-135
-
-
Fukuoka, H.1
-
12
-
-
84859619467
-
Adaptation at the output of the chemotaxis signalling pathway
-
Yuan J., et al. Adaptation at the output of the chemotaxis signalling pathway. Nature 2012, 484:233-236.
-
(2012)
Nature
, vol.484
, pp. 233-236
-
-
Yuan, J.1
-
13
-
-
84908265407
-
Stoichiometry and turnover of the bacterial flagellar switch protein FliN
-
Delalez N.J., et al. Stoichiometry and turnover of the bacterial flagellar switch protein FliN. MBio 2014, 5:e01216-e1314.
-
(2014)
MBio
, vol.5
, pp. e01216-e1314
-
-
Delalez, N.J.1
-
14
-
-
84920135106
-
Adaptive remodelling by FliN in the bacterial rotary motor
-
Branch R.W., et al. Adaptive remodelling by FliN in the bacterial rotary motor. J. Mol. Biol. 2014, 426:3314-3324.
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 3314-3324
-
-
Branch, R.W.1
-
15
-
-
84877581773
-
Ultrasensitivity of an adaptive bacterial motor
-
Yuan J., Berg H.C. Ultrasensitivity of an adaptive bacterial motor. J. Mol. Biol. 2013, 425:1760-1764.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 1760-1764
-
-
Yuan, J.1
Berg, H.C.2
-
16
-
-
33744476417
-
The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11
-
Reid S.W., et al. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:8066-8071.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 8066-8071
-
-
Reid, S.W.1
-
17
-
-
0038684945
-
A protonmotive force drives bacterial flagella
-
Manson M.D., et al. A protonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. U.S.A. 1977, 4:3060-3064.
-
(1977)
Proc. Natl. Acad. Sci. U.S.A.
, vol.4
, pp. 3060-3064
-
-
Manson, M.D.1
-
19
-
-
33748295677
-
In situ structure of the complete Treponema primitia flagellar motor
-
Murphy G.E., et al. In situ structure of the complete Treponema primitia flagellar motor. Nature 2006, 442:1062-1064.
-
(2006)
Nature
, vol.442
, pp. 1062-1064
-
-
Murphy, G.E.1
-
20
-
-
0021280816
-
Successive incorporation of force-generating units in the bacterial rotary motor
-
Block S.M., Berg H.C. Successive incorporation of force-generating units in the bacterial rotary motor. Nature 1984, 309:470-472.
-
(1984)
Nature
, vol.309
, pp. 470-472
-
-
Block, S.M.1
Berg, H.C.2
-
21
-
-
0024295536
-
Restoration of torque in defective flagellar motors
-
Blair D.F., Berg H.C. Restoration of torque in defective flagellar motors. Science 1988, 242:1678-1681.
-
(1988)
Science
, vol.242
, pp. 1678-1681
-
-
Blair, D.F.1
Berg, H.C.2
-
22
-
-
0025058346
-
The MotA protein of E. coli is a proton-conducting component of the flagellar motor
-
Blair D.F., Berg H.C. The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 1990, 60:439-449.
-
(1990)
Cell
, vol.60
, pp. 439-449
-
-
Blair, D.F.1
Berg, H.C.2
-
23
-
-
0347357933
-
Solubilization and purification of the MotA/MotB complex of Escherichia coli
-
Kojima S., Blair D.F. Solubilization and purification of the MotA/MotB complex of Escherichia coli. Biochemistry 2004, 43:26-34.
-
(2004)
Biochemistry
, vol.43
, pp. 26-34
-
-
Kojima, S.1
Blair, D.F.2
-
24
-
-
0034051670
-
+-driven polar flagellar motor component of Vibrio alginolyticus
-
+-driven polar flagellar motor component of Vibrio alginolyticus. J. Biol. Chem. 2000, 275:5718-5722.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 5718-5722
-
-
Sato, K.1
Homma, M.2
-
25
-
-
48749111115
-
Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition
-
Roujeinikova A. Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:10348-10353.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 10348-10353
-
-
Roujeinikova, A.1
-
26
-
-
70350152604
-
Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB
-
Kojima S., et al. Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol. Microbiol. 2009, 73:710-718.
-
(2009)
Mol. Microbiol.
, vol.73
, pp. 710-718
-
-
Kojima, S.1
-
27
-
-
84907203432
-
Conformational change in the periplasmic region of the flagellar stator coupled with the assembly around the rotor
-
Zhu S., et al. Conformational change in the periplasmic region of the flagellar stator coupled with the assembly around the rotor. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:13523-13528.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 13523-13528
-
-
Zhu, S.1
-
28
-
-
33748926752
-
Stoichiometry and turnover in single, functioning membrane protein complexes
-
Leake M.C., et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 2006, 443:355-358.
-
(2006)
Nature
, vol.443
, pp. 355-358
-
-
Leake, M.C.1
-
29
-
-
60349120504
-
Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors
-
Fukuoka H., et al. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol. Microbiol. 2009, 71:825-835.
-
(2009)
Mol. Microbiol.
, vol.71
, pp. 825-835
-
-
Fukuoka, H.1
-
30
-
-
84880387422
-
Dynamics of mechanosensing in the bacterial flagellar motor
-
Lele P.P., et al. Dynamics of mechanosensing in the bacterial flagellar motor. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:11839-11844.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 11839-11844
-
-
Lele, P.P.1
-
31
-
-
84872371364
-
Quantification of flagellar motor stator dynamics through in vivo proton-motive force control
-
Tipping M.J., et al. Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol. Microbiol. 2013, 87:338-347.
-
(2013)
Mol. Microbiol.
, vol.87
, pp. 338-347
-
-
Tipping, M.J.1
-
32
-
-
84883436048
-
Load-dependent assembly of the bacterial flagellar motor
-
Tipping M.J., et al. Load-dependent assembly of the bacterial flagellar motor. MBio 2013, 4:e00551-e613.
-
(2013)
MBio
, vol.4
, pp. e00551-e613
-
-
Tipping, M.J.1
-
33
-
-
79960620016
-
Structural diversity of bacterial flagellar motors
-
Chen S., et al. Structural diversity of bacterial flagellar motors. EMBO J. 2011, 30:2972-2981.
-
(2011)
EMBO J.
, vol.30
, pp. 2972-2981
-
-
Chen, S.1
-
34
-
-
84904295262
-
Molecular architecture of the bacterial flagellar motor in cells
-
Zhao X., et al. Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 2014, 53:4323-4333.
-
(2014)
Biochemistry
, vol.53
, pp. 4323-4333
-
-
Zhao, X.1
-
35
-
-
58149347646
-
Mechanisms of type III protein export for bacterial flagellar assembly
-
Minamino T., et al. Mechanisms of type III protein export for bacterial flagellar assembly. Mol. Biosyst. 2008, 4:1105-1115.
-
(2008)
Mol. Biosyst.
, vol.4
, pp. 1105-1115
-
-
Minamino, T.1
-
36
-
-
84902327129
-
Protein export through the bacterial flagellar type III export pathway
-
Minamino T. Protein export through the bacterial flagellar type III export pathway. Biochim. Biophys. Acta 2014, 1843:1642-1648.
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 1642-1648
-
-
Minamino, T.1
-
37
-
-
38549158887
-
Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export
-
Minamino T., Namba K. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 2008, 451:485-488.
-
(2008)
Nature
, vol.451
, pp. 485-488
-
-
Minamino, T.1
Namba, K.2
-
38
-
-
38549088345
-
Energy source of the flagellar type III secretion
-
Paul K., et al. Energy source of the flagellar type III secretion. Nature 2008, 451:489-492.
-
(2008)
Nature
, vol.451
, pp. 489-492
-
-
Paul, K.1
-
39
-
-
84872007514
-
Architecture of the major component of the type III secretion system export apparatus
-
Abrusci P., et al. Architecture of the major component of the type III secretion system export apparatus. Nat. Struct. Mol. Biol. 2013, 20:99-104.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 99-104
-
-
Abrusci, P.1
-
40
-
-
84889777894
-
Common and distinct structural features of Salmonella injectisome and flagellar basal body
-
Kawamoto A., et al. Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci. Rep. 2013, 3:3369.
-
(2013)
Sci. Rep.
, vol.3
, pp. 3369
-
-
Kawamoto, A.1
-
41
-
-
84896702974
-
Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body
-
Morimoto Y.V., et al. Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body. Mol. Microbiol. 2014, 91:1214-1226.
-
(2014)
Mol. Microbiol.
, vol.91
, pp. 1214-1226
-
-
Morimoto, Y.V.1
-
42
-
-
79955733488
-
Assembly and stability of flagellar motor in Escherichia coli
-
Li H., Sourjik V. Assembly and stability of flagellar motor in Escherichia coli. Mol. Microbiol. 2011, 80:886-899.
-
(2011)
Mol. Microbiol.
, vol.80
, pp. 886-899
-
-
Li, H.1
Sourjik, V.2
-
43
-
-
0038460046
-
Oligomerisation and activation of the FliI ATPase central to the bacterial flagellum assembly
-
Claret L., et al. Oligomerisation and activation of the FliI ATPase central to the bacterial flagellum assembly. Mol. Microbiol. 2003, 48:1349-1355.
-
(2003)
Mol. Microbiol.
, vol.48
, pp. 1349-1355
-
-
Claret, L.1
-
44
-
-
69249221258
-
ATP-induced FliI hexamerization facilitates bacterial flagellar protein export
-
Kazetani K., et al. ATP-induced FliI hexamerization facilitates bacterial flagellar protein export. Biochem. Biophys. Res. Commun. 2009, 388:323-327.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.388
, pp. 323-327
-
-
Kazetani, K.1
-
45
-
-
72049109167
-
Roles of the extreme N-terminal region of FliH for efficient localization of the FliH-FliI complex to the bacterial flagellar type III export apparatus
-
Minamino T., et al. Roles of the extreme N-terminal region of FliH for efficient localization of the FliH-FliI complex to the bacterial flagellar type III export apparatus. Mol. Microbiol. 2009, 74:1471-1483.
-
(2009)
Mol. Microbiol.
, vol.74
, pp. 1471-1483
-
-
Minamino, T.1
-
46
-
-
84868305790
-
Interaction of the extreme N-terminal region of FliH with FlhA is required for efficient bacterial flagellar protein export
-
Hara N., et al. Interaction of the extreme N-terminal region of FliH with FlhA is required for efficient bacterial flagellar protein export. J. Bacteriol. 2012, 194:5353-5360.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 5353-5360
-
-
Hara, N.1
-
47
-
-
84923284551
-
Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus
-
Bai F., et al. Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Sci. Rep. 2014, 4:6528.
-
(2014)
Sci. Rep.
, vol.4
, pp. 6528
-
-
Bai, F.1
-
48
-
-
79952359941
-
Common architecture between the flagellar protein export apparatus and F- and V-ATPases
-
Ibuki T., et al. Common architecture between the flagellar protein export apparatus and F- and V-ATPases. Nat. Struct. Mol. Biol. 2011, 18:277-282.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 277-282
-
-
Ibuki, T.1
-
49
-
-
80053415915
-
An energy transduction mechanism used in bacterial type III protein export
-
Minamino T., et al. An energy transduction mechanism used in bacterial type III protein export. Nat. Commun. 2011, 2:475.
-
(2011)
Nat. Commun.
, vol.2
, pp. 475
-
-
Minamino, T.1
-
50
-
-
84873051807
-
Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus
-
Ibuki T., et al. Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J. Bacteriol. 2013, 195:466-473.
-
(2013)
J. Bacteriol.
, vol.195
, pp. 466-473
-
-
Ibuki, T.1
-
51
-
-
0033779545
-
FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity
-
Minamino T., Macnab R.M. FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol. Microbiol. 2000, 37:1494-1503.
-
(2000)
Mol. Microbiol.
, vol.37
, pp. 1494-1503
-
-
Minamino, T.1
Macnab, R.M.2
-
52
-
-
1642305413
-
Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export
-
Thomas J., et al. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:3945-3950.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 3945-3950
-
-
Thomas, J.1
-
53
-
-
77952710839
-
Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners
-
Imada K., et al. Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners. Proc Natl. Acad. Sci. U.S.A. 2010, 107:8812-8817.
-
(2010)
Proc Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 8812-8817
-
-
Imada, K.1
-
54
-
-
84155162801
-
Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export
-
Minamino T., et al. Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export. Mol. Microbiol. 2012, 83:168-178.
-
(2012)
Mol. Microbiol.
, vol.83
, pp. 168-178
-
-
Minamino, T.1
-
55
-
-
33750464866
-
The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na-driven flagella and required for stator formation
-
Terashima H., et al. The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na-driven flagella and required for stator formation. Mol. Microbiol. 2006, 62:1170-1180.
-
(2006)
Mol. Microbiol.
, vol.62
, pp. 1170-1180
-
-
Terashima, H.1
-
56
-
-
78049356099
-
The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven Vibrio motor
-
Terashima H., et al. The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven Vibrio motor. J. Bacteriol. 2010, 192:5609-5615.
-
(2010)
J. Bacteriol.
, vol.192
, pp. 5609-5615
-
-
Terashima, H.1
-
57
-
-
84876043827
-
Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT
-
Terashima H., et al. Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT. Proc Natl. Acad. Sci. U.S.A. 2013, 110:6133-6138.
-
(2013)
Proc Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 6133-6138
-
-
Terashima, H.1
-
58
-
-
77950672773
-
Role of FlgT in anchoring the flagellum of Vibrio cholera
-
Martinez R.M., et al. Role of FlgT in anchoring the flagellum of Vibrio cholera. J. Bacteriol. 2010, 192:2085-2092.
-
(2010)
J. Bacteriol.
, vol.192
, pp. 2085-2092
-
-
Martinez, R.M.1
-
59
-
-
0027944530
-
Very fast flagellar rotation
-
Magariyama Y., et al. Very fast flagellar rotation. Nature 1994, 371:752.
-
(1994)
Nature
, vol.371
, pp. 752
-
-
Magariyama, Y.1
-
60
-
-
0025148428
-
Abrupt changes in flagellar rotation observed by laser dark-field microscopy
-
Kudo S., et al. Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 1990, 346:677-680.
-
(1990)
Nature
, vol.346
, pp. 677-680
-
-
Kudo, S.1
-
61
-
-
0026792838
-
M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF
-
Ueno T., et al. M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. J. Mol. Biol. 1992, 227:672-677.
-
(1992)
J. Mol. Biol.
, vol.227
, pp. 672-677
-
-
Ueno, T.1
-
62
-
-
84862904491
-
Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG
-
Levenson R., et al. Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG. Biochemistry 2012, 51:5052-5060.
-
(2012)
Biochemistry
, vol.51
, pp. 5052-5060
-
-
Levenson, R.1
-
63
-
-
16844367441
-
Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima
-
Brown P.N., et al. Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. J. Bacteriol. 2005, 187:2890-2902.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 2890-2902
-
-
Brown, P.N.1
-
64
-
-
79960650428
-
Architecture of the flagellar rotor
-
Paul K., et al. Architecture of the flagellar rotor. EMBO J. 2011, 30:2962-2971.
-
(2011)
EMBO J.
, vol.30
, pp. 2962-2971
-
-
Paul, K.1
-
65
-
-
84867815891
-
Structure of flagellar motor proteins in complex allows for insights into motor structure and switching
-
Vartanian A.S., et al. Structure of flagellar motor proteins in complex allows for insights into motor structure and switching. J. Biol. Chem. 2012, 287:35779-35783.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 35779-35783
-
-
Vartanian, A.S.1
-
66
-
-
84877809465
-
Structural basis of FliG-FliM interaction in Helicobacter pylori
-
Lam K.H., et al. Structural basis of FliG-FliM interaction in Helicobacter pylori. Mol. Microbiol. 2013, 88:798-812.
-
(2013)
Mol. Microbiol.
, vol.88
, pp. 798-812
-
-
Lam, K.H.1
-
67
-
-
0034075254
-
Interaction between FliE and FlgB, a proximal rod component of the flagellar basal body of Salmonella
-
Minamino T., et al. Interaction between FliE and FlgB, a proximal rod component of the flagellar basal body of Salmonella. J. Bacteriol. 2000, 182:3029-3036.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 3029-3036
-
-
Minamino, T.1
-
68
-
-
84883311301
-
Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi
-
Zhao X., et al. Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:14390-14395.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 14390-14395
-
-
Zhao, X.1
-
69
-
-
0033053893
-
Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium
-
Nambu T., et al. Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J. Bacteriol. 1999, 181:1555-1561.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 1555-1561
-
-
Nambu, T.1
-
70
-
-
34548864141
-
The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution
-
Chevance F.F. The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution. Genes Dev. 2007, 21:2326-2335.
-
(2007)
Genes Dev.
, vol.21
, pp. 2326-2335
-
-
Chevance, F.F.1
-
71
-
-
84901989735
-
Rod-to-hook transition for extracellular flagellum assembly is catalyzed by the L-ring-dependent rod scaffold removal
-
Cohen E.J., Hughes K.T. Rod-to-hook transition for extracellular flagellum assembly is catalyzed by the L-ring-dependent rod scaffold removal. J. Bacteriol. 2014, 196:2387-2395.
-
(2014)
J. Bacteriol.
, vol.196
, pp. 2387-2395
-
-
Cohen, E.J.1
Hughes, K.T.2
-
72
-
-
69949094466
-
Characterization of two outer membrane proteins, FlgO and FlgP, that influence Vibrio cholerae motility
-
Martinez R.M., et al. Characterization of two outer membrane proteins, FlgO and FlgP, that influence Vibrio cholerae motility. J. Bacteriol. 2009, 191:5669-5679.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 5669-5679
-
-
Martinez, R.M.1
-
73
-
-
45549087026
-
Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY
-
Kojima S., et al. Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7696-7701.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 7696-7701
-
-
Kojima, S.1
-
74
-
-
21844451390
-
Interactions of MotX with MotY and with the PomA/PomB sodium ion channel complex of the Vibrio alginolyticus polar flagellum
-
Okabe M., et al. Interactions of MotX with MotY and with the PomA/PomB sodium ion channel complex of the Vibrio alginolyticus polar flagellum. J. Biol. Chem. 2005, 280:25659-25664.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 25659-25664
-
-
Okabe, M.1
-
75
-
-
0032568636
-
Electrostatic interactions between rotor and stator in the bacterial flagellar motor
-
Zhou J., et al. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc. Natl Acad. Sci. U.S.A. 1998, 95:6436-6441.
-
(1998)
Proc. Natl Acad. Sci. U.S.A.
, vol.95
, pp. 6436-6441
-
-
Zhou, J.1
-
76
-
-
78649598805
-
Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor
-
Morimoto Y.V., et al. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol. Microbiol. 2010, 78:1117-1129.
-
(2010)
Mol. Microbiol.
, vol.78
, pp. 1117-1129
-
-
Morimoto, Y.V.1
-
77
-
-
84873045159
-
Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation
-
Morimoto Y.V., et al. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. J. Bacteriol. 2013, 195:474-481.
-
(2013)
J. Bacteriol.
, vol.195
, pp. 474-481
-
-
Morimoto, Y.V.1
-
78
-
-
81055156686
-
+-driven flagella of Vibrio alginolyticus
-
+-driven flagella of Vibrio alginolyticus. J. Mol. Biol. 2011, 414:62-74.
-
(2011)
J. Mol. Biol.
, vol.414
, pp. 62-74
-
-
Kojima, S.1
-
79
-
-
84895724874
-
+-driven flagellar motor to torque generation in Vibrio alginolyticus
-
+-driven flagellar motor to torque generation in Vibrio alginolyticus. J. Bacteriol. 2014, 196:1377-1385.
-
(2014)
J. Bacteriol.
, vol.196
, pp. 1377-1385
-
-
Takekawa, N.1
-
80
-
-
33751073719
-
The Escherichia coli MotAB proton channel unplugged
-
Hosking E.R., et al. The Escherichia coli MotAB proton channel unplugged. J. Mol. Biol 2006, 364:921-937.
-
(2006)
J. Mol. Biol
, vol.364
, pp. 921-937
-
-
Hosking, E.R.1
-
81
-
-
77950369485
-
Proton-conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in Salmonella
-
Morimoto Y.V., et al. Proton-conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in Salmonella. FEBS Lett. 2010, 584:1268-1272.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1268-1272
-
-
Morimoto, Y.V.1
-
82
-
-
84877282804
-
+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA
-
+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA. J. Biochem. 2014, 153:441-451.
-
(2014)
J. Biochem.
, vol.153
, pp. 441-451
-
-
Takekawa, N.1
-
83
-
-
72949124219
-
Sense and sensibility: flagellum-mediated gene regulation
-
Anderson J.K., et al. Sense and sensibility: flagellum-mediated gene regulation. Trends Microbiol. 2010, 18:30-37.
-
(2010)
Trends Microbiol.
, vol.18
, pp. 30-37
-
-
Anderson, J.K.1
-
84
-
-
84906935104
-
Biofilms, flagella, and mechanosensing of surfaces by bacteria
-
Belas R. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol. 2014, 22:517-527.
-
(2014)
Trends Microbiol.
, vol.22
, pp. 517-527
-
-
Belas, R.1
-
85
-
-
84891385789
-
The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor
-
Castillo D.J., et al. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. Biophysics 2013, 9:173-181.
-
(2013)
Biophysics
, vol.9
, pp. 173-181
-
-
Castillo, D.J.1
-
86
-
-
0031944413
-
Function of protonatable residues in the flagellar motor of Escherichia coli: critical role for Asp 32 of MotB
-
Zhou J., et al. Function of protonatable residues in the flagellar motor of Escherichia coli: critical role for Asp 32 of MotB. J. Bacteriol. 1998, 180:2729-2735.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 2729-2735
-
-
Zhou, J.1
-
87
-
-
53849145309
-
Suppressor analysis of the MotB(D33E) mutation to probe the bacterial flagellar motor dynamics coupled with proton translocation
-
Che Y-S., et al. Suppressor analysis of the MotB(D33E) mutation to probe the bacterial flagellar motor dynamics coupled with proton translocation. J. Bacteriol. 2008, 190:6660-6667.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 6660-6667
-
-
Che, Y.-S.1
-
88
-
-
84891145792
-
Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor
-
Che Y-S., et al. Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor. Mol. Microbiol. 2014, 91:175-184.
-
(2014)
Mol. Microbiol.
, vol.91
, pp. 175-184
-
-
Che, Y.-S.1
-
89
-
-
71549141297
-
+ ion and carboxylates of the PomA-PomB stator unit studied by ATR-FTIR spectroscopy
-
+ ion and carboxylates of the PomA-PomB stator unit studied by ATR-FTIR spectroscopy. Biochemistry 2009, 48:11699-11705.
-
(2009)
Biochemistry
, vol.48
, pp. 11699-11705
-
-
Sudo, Y.1
-
90
-
-
60349101700
-
Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1
-
Paulick A., et al. Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol. Microbiol. 2009, 71:836-850.
-
(2009)
Mol. Microbiol.
, vol.71
, pp. 836-850
-
-
Paulick, A.1
-
91
-
-
84895809501
-
Hybrid-fuel bacterial flagellar motors in Escherichia coli
-
Sowa Y., et al. Hybrid-fuel bacterial flagellar motors in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:3436-3441.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 3436-3441
-
-
Sowa, Y.1
-
92
-
-
84907874467
-
Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni
-
Müller A., et al. Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. Microbiologyopen 2014, 3:702-710.
-
(2014)
Microbiologyopen
, vol.3
, pp. 702-710
-
-
Müller, A.1
-
93
-
-
67749093018
-
Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion
-
Liu J., et al. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J. Bacteriol. 2009, 191:5026-5036.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 5026-5036
-
-
Liu, J.1
-
94
-
-
84863281646
-
Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography
-
Raddi G., et al. Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. J. Bacteriol. 2012, 194:1299-1306.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 1299-1306
-
-
Raddi, G.1
-
95
-
-
77957905087
-
Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography
-
Liu J., et al. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J. Mol. Biol. 2010, 403:546-561.
-
(2010)
J. Mol. Biol.
, vol.403
, pp. 546-561
-
-
Liu, J.1
-
96
-
-
33846609721
-
Characterization of two sets of subpolar flagella in Bradyrhizobium japonicum
-
Kanbe M., et al. Characterization of two sets of subpolar flagella in Bradyrhizobium japonicum. J. Bacteriol. 2007, 189:1083-1089.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 1083-1089
-
-
Kanbe, M.1
-
97
-
-
14044257880
-
Protease susceptibility of the Caulobacter crescentus flagellar hook-basal body: a possible mechanism of flagellar ejection during cell differentiation
-
Kanbe M., et al. Protease susceptibility of the Caulobacter crescentus flagellar hook-basal body: a possible mechanism of flagellar ejection during cell differentiation. Microbiology 2007, 151:433-438.
-
(2007)
Microbiology
, vol.151
, pp. 433-438
-
-
Kanbe, M.1
-
98
-
-
84887525457
-
A distant homologue of the FlgT protein interacts with MotB and FliL and is essential for flagellar rotation in Rhodobacter sphaeroides
-
Fabela S., et al. A distant homologue of the FlgT protein interacts with MotB and FliL and is essential for flagellar rotation in Rhodobacter sphaeroides. J. Bacteriol. 2013, 195:5285-5296.
-
(2013)
J. Bacteriol.
, vol.195
, pp. 5285-5296
-
-
Fabela, S.1
-
99
-
-
79955612894
-
Characterization of lateral flagella of Selenomonas ruminantium
-
Haya S., et al. Characterization of lateral flagella of Selenomonas ruminantium. Appl. Environ. Microbiol. 2011, 77:2799-2802.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 2799-2802
-
-
Haya, S.1
-
100
-
-
0031009291
-
Purification and characterization of the flagellar hook-basal body complex of Bacillus subtilis
-
Kubori T., et al. Purification and characterization of the flagellar hook-basal body complex of Bacillus subtilis. Mol. Microbiol. 1997, 24:399-410.
-
(1997)
Mol. Microbiol.
, vol.24
, pp. 399-410
-
-
Kubori, T.1
|