메뉴 건너뛰기




Volumn 25, Issue 4, 2015, Pages 580-591

Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes

Author keywords

Digital elevation model attributes; Multilayer perceptron; Soil classification; Soil survey; Soil forming factors

Indexed keywords

ACCURACY ASSESSMENT; ARTIFICIAL NEURAL NETWORK; DIGITAL ELEVATION MODEL; DIGITAL MAPPING; ERROR ANALYSIS; INTERPOLATION; SOIL CLASSIFICATION; SOIL SURVEY; TERRAIN;

EID: 84937546294     PISSN: 10020160     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1002-0160(15)30038-2     Document Type: Article
Times cited : (79)

References (56)
  • 1
    • 79958289906 scopus 로고    scopus 로고
    • Predict soil erosion with artificial neural network in Tanakami (Japan)
    • Abdollahzadeh A, Mukhlisin M, El Shafie A Predict soil erosion with artificial neural network in Tanakami (Japan). WSEAS T Comput 2011, 10:51-60.
    • (2011) WSEAS T Comput , vol.10 , pp. 51-60
    • Abdollahzadeh, A.1    Mukhlisin, M.2    El Shafie, A.3
  • 2
    • 57849083889 scopus 로고    scopus 로고
    • Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach
    • Alvarez R Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. Eur J Agron 2009, 30:70-77.
    • (2009) Eur J Agron , vol.30 , pp. 70-77
    • Alvarez, R.1
  • 3
    • 33644906366 scopus 로고    scopus 로고
    • Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil
    • Amegashie F, Shang J Q, Yanful E K, Ding W, Al-Martini S Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil. Can Geotech J 2006, 43:100-109.
    • (2006) Can Geotech J , vol.43 , pp. 100-109
    • Amegashie, F.1    Shang, J.Q.2    Yanful, E.K.3    Ding, W.4    Al-Martini, S.5
  • 5
    • 67650552421 scopus 로고    scopus 로고
    • Estimation of heavy metal sorption in German soils using artificial neural networks
    • Anagu I, Ingwersen J, Utermann J, Streck T Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma 2009, 152:104-112.
    • (2009) Geoderma , vol.152 , pp. 104-112
    • Anagu, I.1    Ingwersen, J.2    Utermann, J.3    Streck, T.4
  • 6
    • 49549154179 scopus 로고
    • Photo-interpretation of land facets as a soil mapping technique
    • Areola O Photo-interpretation of land facets as a soil mapping technique. Geoforum 1974, 5:25-38.
    • (1974) Geoforum , vol.5 , pp. 25-38
    • Areola, O.1
  • 9
    • 74449084707 scopus 로고    scopus 로고
    • Prediction of swelling pressures of expansive soils using artificial neural networks
    • Banu Ikizler S, Aytekin M, Vekli M, Kocabao F Prediction of swelling pressures of expansive soils using artificial neural networks. Adv Eng Softw 2010, 41:647-655.
    • (2010) Adv Eng Softw , vol.41 , pp. 647-655
    • Banu Ikizler, S.1    Aytekin, M.2    Vekli, M.3    Kocabao, F.4
  • 12
    • 0020642209 scopus 로고
    • A quantitative method to test for consistency and correctness in photointerpretation
    • Congalton R G, Mead R A A quantitative method to test for consistency and correctness in photointerpretation. Photogramm. Eng Rem Sens 1983, 49:69-74.
    • (1983) Photogramm. Eng Rem Sens , vol.49 , pp. 69-74
    • Congalton, R.G.1    Mead, R.A.2
  • 13
    • 79952696637 scopus 로고    scopus 로고
    • Simulation for response of crop yield to soil moisture and salinity with artificial neural network
    • Dai X Q, Huo Z L, Wang H M Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crop Res 2011, 121:441-449.
    • (2011) Field Crop Res , vol.121 , pp. 441-449
    • Dai, X.Q.1    Huo, Z.L.2    Wang, H.M.3
  • 14
    • 71849087174 scopus 로고    scopus 로고
    • Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity
    • Erzin Y, Hanumantha Rao B, Patel A, Gumaste S D, Singh D N Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity. Int J Therm Sci 2010, 49:118-130.
    • (2010) Int J Therm Sci , vol.49 , pp. 118-130
    • Erzin, Y.1    Hanumantha Rao, B.2    Patel, A.3    Gumaste, S.D.4    Singh, D.N.5
  • 15
    • 68049126145 scopus 로고    scopus 로고
    • The effect of survey density on the results of geopedological approach in soil mapping: A case study in the Borujen region, Central Iran
    • Esfandiarpoor Borujeni I, Salehi M H, Toomanian N, Mohammadi J, Poch R M The effect of survey density on the results of geopedological approach in soil mapping: A case study in the Borujen region, Central Iran. Catena 2009, 79:18-26.
    • (2009) Catena , vol.79 , pp. 18-26
    • Esfandiarpoor Borujeni, I.1    Salehi, M.H.2    Toomanian, N.3    Mohammadi, J.4    Poch, R.M.5
  • 17
    • 0034112572 scopus 로고    scopus 로고
    • On the application of inductive machine learning tools to geographical analysis
    • Gahegan M On the application of inductive machine learning tools to geographical analysis. Geogr Anal 2000, 32:113-139.
    • (2000) Geogr Anal , vol.32 , pp. 113-139
    • Gahegan, M.1
  • 18
    • 0037281210 scopus 로고    scopus 로고
    • Is inductive machine learning just another wild goose (or might it lay the golden egg)?
    • Gahegan M Is inductive machine learning just another wild goose (or might it lay the golden egg)?. Int J Geogr Inf Sci 2003, 17:69-92.
    • (2003) Int J Geogr Inf Sci , vol.17 , pp. 69-92
    • Gahegan, M.1
  • 20
    • 84937578940 scopus 로고    scopus 로고
    • Geological Survey and Mineral Exploration of Iran, Tehran
    • Geological Survey and Mineral Exploration of Iran Geological Map of Borujen (Sheet No. 6253) 2008, Geological Survey and Mineral Exploration of Iran, Tehran.
    • (2008) Geological Map of Borujen (Sheet No. 6253)
  • 21
    • 38049042366 scopus 로고    scopus 로고
    • Extrapolating regional soil landscapes from an existing soil map: Sampling intensity, validation procedures, and integration of spatial context
    • Grinand C, Arrouays D, Laroche B, Martin M P Extrapolating regional soil landscapes from an existing soil map: Sampling intensity, validation procedures, and integration of spatial context. Geoderma 2008, 143:180-190.
    • (2008) Geoderma , vol.143 , pp. 180-190
    • Grinand, C.1    Arrouays, D.2    Laroche, B.3    Martin, M.P.4
  • 22
    • 77949487615 scopus 로고    scopus 로고
    • Development of soft computing and applications in agricultural and biological engineering
    • Huang Y, Lan Y, Thomson S J, Fang A, Hoffmann W C, Lacey R E Development of soft computing and applications in agricultural and biological engineering. Comput Electron Agr 2010, 71:107-127.
    • (2010) Comput Electron Agr , vol.71 , pp. 107-127
    • Huang, Y.1    Lan, Y.2    Thomson, S.J.3    Fang, A.4    Hoffmann, W.C.5    Lacey, R.E.6
  • 24
    • 84858442470 scopus 로고    scopus 로고
    • Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: Comparing logistic regression approaches to predict diagnostic horizons and soil types
    • Jafari A, Finke P A, Van de Wauw J, Ayoubi S, Khademi H Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: Comparing logistic regression approaches to predict diagnostic horizons and soil types. Eur J Soil Sci 2012, 63:284-298.
    • (2012) Eur J Soil Sci , vol.63 , pp. 284-298
    • Jafari, A.1    Finke, P.A.2    Van de Wauw, J.3    Ayoubi, S.4    Khademi, H.5
  • 25
    • 19044373009 scopus 로고    scopus 로고
    • Artificial neural networks for corn and soybean yield prediction
    • Kaul M, Hill R L, Walthall C Artificial neural networks for corn and soybean yield prediction. Agr Syst 2005, 85:1-18.
    • (2005) Agr Syst , vol.85 , pp. 1-18
    • Kaul, M.1    Hill, R.L.2    Walthall, C.3
  • 26
    • 70349247702 scopus 로고    scopus 로고
    • Estimation of surface shear strength in Zagros region of Iran-A comparison of artificial neural networks and multiple-linear regression models
    • Khalilmoghadam B, Afyuni M, Abbaspour K C, Jalalian A, Dehghani A A, Schulin R Estimation of surface shear strength in Zagros region of Iran-A comparison of artificial neural networks and multiple-linear regression models. Geoderma 2009, 153:29-36.
    • (2009) Geoderma , vol.153 , pp. 29-36
    • Khalilmoghadam, B.1    Afyuni, M.2    Abbaspour, K.C.3    Jalalian, A.4    Dehghani, A.A.5    Schulin, R.6
  • 27
    • 53549097342 scopus 로고    scopus 로고
    • Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas
    • Kim M, Gilley J E Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas. Comput Electron Agr 2008, 64:268-275.
    • (2008) Comput Electron Agr , vol.64 , pp. 268-275
    • Kim, M.1    Gilley, J.E.2
  • 28
    • 70349258840 scopus 로고    scopus 로고
    • Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping
    • Elsevier, Amsterdam, P. Lagacherie, A. B. McBratney, M. Voltz (Eds.)
    • Lagacherie P, McBratney A B Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping. Digital Soil Mapping: An Introductory Perspective. Developments in Soil Science Volume 31 2007, 3-22. Elsevier, Amsterdam. P. Lagacherie, A. B. McBratney, M. Voltz (Eds.).
    • (2007) Digital Soil Mapping: An Introductory Perspective. Developments in Soil Science Volume 31 , pp. 3-22
    • Lagacherie, P.1    McBratney, A.B.2
  • 29
    • 77951075061 scopus 로고    scopus 로고
    • Oxford and IBH Publishing, New Delhi
    • Legros J P Mapping of the Soil 2006, Oxford and IBH Publishing, New Delhi.
    • (2006) Mapping of the Soil
    • Legros, J.P.1
  • 31
    • 0037455860 scopus 로고    scopus 로고
    • Artificial neural networks of soil erosion and runoff prediction at the plot scale
    • Licznar P, Nearing M A Artificial neural networks of soil erosion and runoff prediction at the plot scale. Catena 2003, 51:89-114.
    • (2003) Catena , vol.51 , pp. 89-114
    • Licznar, P.1    Nearing, M.A.2
  • 35
    • 0032895729 scopus 로고    scopus 로고
    • Spatial prediction of soil properties using environmental correlation
    • McKenzie N J, Ryan P J Spatial prediction of soil properties using environmental correlation. Geoderma 1999, 89:67-94.
    • (1999) Geoderma , vol.89 , pp. 67-94
    • McKenzie, N.J.1    Ryan, P.J.2
  • 36
    • 54549096792 scopus 로고    scopus 로고
    • Placing soilgenesis and transport processes into a landscape context: A multiscale terrain-analysis approach
    • Möller M, Volk M, Friedrich K, Lymburner L Placing soilgenesis and transport processes into a landscape context: A multiscale terrain-analysis approach. J Plant Nutr Soil Sci 2008, 171:419-430.
    • (2008) J Plant Nutr Soil Sci , vol.171 , pp. 419-430
    • Möller, M.1    Volk, M.2    Friedrich, K.3    Lymburner, L.4
  • 38
    • 0026359098 scopus 로고
    • Digital terrain modelling: A review of hydrological, geomorphological, and biological applications
    • Moore I D, Grayson R B, Ladson A R Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol Process 1991, 5:3-30.
    • (1991) Hydrol Process , vol.5 , pp. 3-30
    • Moore, I.D.1    Grayson, R.B.2    Ladson, A.R.3
  • 39
    • 84937626544 scopus 로고    scopus 로고
    • Research Institute of NCC, Tehran
    • National Cartographic Center Topographic Map of Boroujen 2009, Research Institute of NCC, Tehran.
    • (2009) Topographic Map of Boroujen
  • 40
    • 77953736933 scopus 로고    scopus 로고
    • Predicting rainfed wheat quality and quantity by artificial neural network using terrain and soil characteristics
    • Norouzi M, Ayoubi1 S, Jalalian A, Khademi H, Dehghani A A Predicting rainfed wheat quality and quantity by artificial neural network using terrain and soil characteristics. Acta Agr Scand B-S P 2010, 60:341-352.
    • (2010) Acta Agr Scand B-S P , vol.60 , pp. 341-352
    • Norouzi, M.1    Ayoubi1, S.2    Jalalian, A.3    Khademi, H.4    Dehghani, A.A.5
  • 41
    • 0033500743 scopus 로고    scopus 로고
    • Accuracy and reliability of pedotransfer functions as affected by grouping soils
    • Pachepsky Y A, Rawls W J Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Sci Soc Am J 1999, 63:1748-1757.
    • (1999) Soil Sci Soc Am J , vol.63 , pp. 1748-1757
    • Pachepsky, Y.A.1    Rawls, W.J.2
  • 46
    • 85009522195 scopus 로고    scopus 로고
    • Evaluatiion of artificial neural network models for prediction of spatial variability of some soil chemical properties
    • Saffari M, Yasrebi J, Sarikhani F, Gazni R, Moazallahi M, Fathi H, Emadi M Evaluatiion of artificial neural network models for prediction of spatial variability of some soil chemical properties. Res J Biol Sci 2009, 4:815-820.
    • (2009) Res J Biol Sci , vol.4 , pp. 815-820
    • Saffari, M.1    Yasrebi, J.2    Sarikhani, F.3    Gazni, R.4    Moazallahi, M.5    Fathi, H.6    Emadi, M.7
  • 47
    • 84865722399 scopus 로고    scopus 로고
    • Modeling of some soil properties using artificial neural network and multivariate regression in Gorgan Province, North of Iran
    • Sarmadian F, Taghizadeh Mehrjardi R Modeling of some soil properties using artificial neural network and multivariate regression in Gorgan Province, North of Iran. Glob J Environ Res 2008, 2:30-35.
    • (2008) Glob J Environ Res , vol.2 , pp. 30-35
    • Sarmadian, F.1    Taghizadeh Mehrjardi, R.2
  • 49
    • 15544383102 scopus 로고    scopus 로고
    • Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks
    • Shang J Q, Ding W, Rowe R K, Josic L Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks. Can Geotech J 2004, 41:1054-1067.
    • (2004) Can Geotech J , vol.41 , pp. 1054-1067
    • Shang, J.Q.1    Ding, W.2    Rowe, R.K.3    Josic, L.4
  • 51
    • 77954537216 scopus 로고    scopus 로고
    • USDA, Natural Resources Conservation Service, Washington, D.C.
    • Soil Survey Staff Keys to Soil Taxonomy 2010, USDA, Natural Resources Conservation Service, Washington, D.C. 11th Edition.
    • (2010) Keys to Soil Taxonomy
  • 53
    • 0023163773 scopus 로고
    • Quantitative analysis of land surface topography
    • Zevenbergen L W, Thorne C R Quantitative analysis of land surface topography. Earth Surf Proc Land 1987, 12:47-56.
    • (1987) Earth Surf Proc Land , vol.12 , pp. 47-56
    • Zevenbergen, L.W.1    Thorne, C.R.2
  • 54
    • 77949840374 scopus 로고    scopus 로고
    • Using artificial neural network models to produce soil organic carbon content distribution maps across landscapes
    • Zhao Z, Yang Q, Benoy G, Chow T L, Xing Z, Rees H W, Meng F R Using artificial neural network models to produce soil organic carbon content distribution maps across landscapes. Can J Soil Sci 2010, 90:75-87.
    • (2010) Can J Soil Sci , vol.90 , pp. 75-87
    • Zhao, Z.1    Yang, Q.2    Benoy, G.3    Chow, T.L.4    Xing, Z.5    Rees, H.W.6    Meng, F.R.7
  • 55
    • 0034103559 scopus 로고    scopus 로고
    • Mapping soil landscape as spatial continua: The neural network approach
    • Zhu A X Mapping soil landscape as spatial continua: The neural network approach. Water Resour Res 2000, 36:663-677.
    • (2000) Water Resour Res , vol.36 , pp. 663-677
    • Zhu, A.X.1
  • 56
    • 0004193049 scopus 로고
    • International Insititute for Geoinformation Science and Earth Observation (ITC), Enschede
    • Zinck J A Physiography and Soils. ITC Lecture Notes SOL. 4.1 1988, International Insititute for Geoinformation Science and Earth Observation (ITC), Enschede.
    • (1988) Physiography and Soils. ITC Lecture Notes SOL. 4.1
    • Zinck, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.