메뉴 건너뛰기




Volumn 17, Issue 1, 2003, Pages 69-92

Is inductive machine learning just another wild goose (or might it lay the golden egg)?

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTICAL METHOD;

EID: 0037281210     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/713811742     Document Type: Article
Times cited : (68)

References (119)
  • 4
    • 0029507498 scopus 로고
    • Local indicators of spatial association—LISA
    • ANSELIN, L., 1995. “ Local indicators of spatial association—LISA ”. In Geographical Analysis 93–115.
    • (1995) Geographical Analysis , pp. 93-115
    • Anselin, L.1
  • 6
    • 0344117540 scopus 로고    scopus 로고
    • A new proposal to adjust Moran's I for population density
    • ASSUNCAO, R. M., and REIS, E. A., 1999. A new proposal to adjust Moran's I for population density. Statistics and Computing, 18:2147–2162.
    • (1999) Statistics and Computing , vol.18 , pp. 2147-2162
    • Assuncao, R.M.1    Reis, E.A.2
  • 7
    • 0028562752 scopus 로고
    • A review of statistical spatial analysis in geographical information systems
    • Fotheringham S., Rogerson P., (eds), London: Taylor and Francis
    • BAILEY, T. C., 1994. “ A review of statistical spatial analysis in geographical information systems ”. In Spatial Analysis and GIS, Edited by:Fotheringham, S., and Rogerson, P., London:Taylor and Francis.
    • (1994) Spatial Analysis and GIS
    • Bailey, T.C.1
  • 8
    • 0033786183 scopus 로고    scopus 로고
    • Seamless integration of spatial statistics and GIS: The S-Plus for ArcView and the S + Grassland links
    • BAO, S., ANSELIN, L., MARTIN, D., and STRALBERG, D., 2000. Seamless integration of spatial statistics and GIS:the S-Plus for ArcView and the S + Grassland links. Journal of Geographical Systems, 2:287–306.
    • (2000) Journal of Geographical Systems , vol.2 , pp. 287-306
    • Bao, S.1    Anselin, L.2    Martin, D.3    Stralberg, D.4
  • 9
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • BENEDIKTSSON, J. A., SWAIN, P. H., and ERSOY, O. K., 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28:540–551.
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , pp. 540-551
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 10
    • 0027789411 scopus 로고
    • Conjugate gradient neural networks in classification of multisource and very high dimensional remote sensing data
    • BENEDIKTSSON, J. A., SWAIN, P. H., and ERSOY, O. K., 1993. Conjugate gradient neural networks in classification of multisource and very high dimensional remote sensing data. International Journal of Remote Sensing, 14:2883–2903.
    • (1993) International Journal of Remote Sensing , vol.14 , pp. 2883-2903
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 12
    • 0032406517 scopus 로고    scopus 로고
    • Exploring the solution space of semi-structured geographical problems with genetic algorithms
    • BENNETT, D. A., WADE, G. A., and ARMSTRONG, M. P., 1999. Exploring the solution space of semi-structured geographical problems with genetic algorithms. Transactions in GIS, 3:51–72.
    • (1999) Transactions in GIS , vol.3 , pp. 51-72
    • Bennett, D.A.1    Wade, G.A.2    Armstrong, M.P.3
  • 13
    • 0029512841 scopus 로고
    • The use of parallel computers to solve nonlinear spatial optimisation problems: An application in network planning
    • BIRKIN, M., CLARKE, G., and GEORGE, F., 1995. The use of parallel computers to solve nonlinear spatial optimisation problems:an application in network planning. Environment and Planning A, 27:1049–1068.
    • (1995) Environment and Planning A , vol.27 , pp. 1049-1068
    • Birkin, M.1    Clarke, G.2    George, F.3
  • 16
    • 84958839520 scopus 로고
    • A simple test for heteroskedasticity and random coefficient variation
    • BREUSCH, T. S., and PAGAN, A. R., 1979. A simple test for heteroskedasticity and random coefficient variation. Econometrica, 47:1287–1294.
    • (1979) Econometrica , vol.47 , pp. 1287-1294
    • Breusch, T.S.1    Pagan, A.R.2
  • 18
    • 0013343676 scopus 로고    scopus 로고
    • Is ‘statistics inferens’ still the geographical name for a wild goose?
    • BRUNSDON, C., 2001. Is ‘statistics inferens’ still the geographical name for a wild goose?. Transactions in GIS, 5:1–3.
    • (2001) Transactions in GIS , vol.5 , pp. 1-3
    • Brunsdon, C.1
  • 19
    • 0030432956 scopus 로고    scopus 로고
    • Geographically weighted regression: A method for exploring spatial nonstationarity
    • BRUNSDON, C., FOTHERINGHAM, A. S., and CHARLTON, M. E., 1996. Geographically weighted regression:A method for exploring spatial nonstationarity. Geographical Analysis, 28:281–298.
    • (1996) Geographical Analysis , vol.28 , pp. 281-298
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.E.3
  • 21
    • 0032124778 scopus 로고    scopus 로고
    • Looking forward: Geographic information services and libraries in the future
    • BUTTENFIELD, B. P., 1998. Looking forward:geographic information services and libraries in the future. Cartography and GIS, 25:161–171.
    • (1998) Cartography and GIS , vol.25 , pp. 161-171
    • Buttenfield, B.P.1
  • 27
    • 74349097539 scopus 로고    scopus 로고
    • th International Conference on Machine Learning, San Francisco, California: Morgan-Kaufmann
    • th International Conference on Machine Learning. pp. 115–123. San Francisco, California:Morgan-Kaufmann.
    • Fast, effective rule induction , pp. 115-123
    • Cohen, W.W.1
  • 28
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classification of remotely sensed data
    • CONGALTON, R., 1991. A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of the Environment, 37:35–45.
    • (1991) Remote Sensing of the Environment , vol.37 , pp. 35-45
    • Congalton, R.1
  • 31
    • 85024509453 scopus 로고    scopus 로고
    • Almeida L.B., Wellekens C.J., (eds), Proceedings of Neural Networks EURASIP Workshop, Sesimbra, Portugal. : Berlin: Springer-Verlag
    • CYBENKO, G., Complexity theory of neural networks and classification problems. Proceedings of Neural Networks EURASIP Workshop. Sesimbra, Portugal. Edited by:Almeida, L. B., and Wellekens, C. J., pp. 24–44. Berlin:Springer-Verlag.
    • Complexity theory of neural networks and classification problems , pp. 24-44
    • Cybenko, G.1
  • 32
    • 0033014088 scopus 로고    scopus 로고
    • Data fusion using artificial neural networks: A case study on multitemporal change analysis
    • DAI, X., and KHORRAM, S., 1999. Data fusion using artificial neural networks:a case study on multitemporal change analysis. Computers, Environment and Urban Systems, 23:19–31.
    • (1999) Computers, Environment and Urban Systems , vol.23 , pp. 19-31
    • Dai, X.1    Khorram, S.2
  • 33
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • Winter
    • DIETTERICH, T. G., 1997. Machine learning research:four current directions. AI magazine, Winter:97–136.
    • (1997) AI magazine , pp. 97-136
    • Dietterich, T.G.1
  • 37
    • 0028560177 scopus 로고
    • Probable and fuzzy models of the viewshed operation
    • Worboys M., (ed), London: Taylor and Francis
    • FISHER, P. F., 1994. “ Probable and fuzzy models of the viewshed operation ”. In Innovations in GIS 1, Edited by:Worboys, M., 161–175. London:Taylor and Francis.
    • (1994) Innovations in GIS 1 , pp. 161-175
    • Fisher, P.F.1
  • 38
    • 0031668111 scopus 로고    scopus 로고
    • A genetic-algorithms based evolutionary computational neural network for modeling spatial interaction data
    • FISCHER, M. M., and LEUNG, Y., 1998. A genetic-algorithms based evolutionary computational neural network for modeling spatial interaction data. Annals of Regional Science, 32:437–458.
    • (1998) Annals of Regional Science , vol.32 , pp. 437-458
    • Fischer, M.M.1    Leung, Y.2
  • 39
    • 0032769079 scopus 로고    scopus 로고
    • Optimization in an error backpropagation neural network environment with a performance test on a pattern classification problem
    • FISCHER, M. M., and STAUFER, P., 1999. Optimization in an error backpropagation neural network environment with a performance test on a pattern classification problem. Geographical Analysis, 31:89–108.
    • (1999) Geographical Analysis , vol.31 , pp. 89-108
    • Fischer, M.M.1    Staufer, P.2
  • 40
    • 0028167313 scopus 로고
    • Assessing the classification accuracy of multisource remote sensing data
    • FITZGERALD, R. W., and LEES, B. G., 1994. Assessing the classification accuracy of multisource remote sensing data. Remote Sensing of the Environment, 47:362–368.
    • (1994) Remote Sensing of the Environment , vol.47 , pp. 362-368
    • Fitzgerald, R.W.1    Lees, B.G.2
  • 41
    • 0028560774 scopus 로고
    • Classification of remotely sensed data by an artificial neural network: Issues relating to training data characteristics
    • FOODY, G. M., MCCULLOCH, M. B., and YATES, W. B., 1995. Classification of remotely sensed data by an artificial neural network:issues relating to training data characteristics. Photogrammetric Engineering and Remote Sensing, 61:391–401.
    • (1995) Photogrammetric Engineering and Remote Sensing , vol.61 , pp. 391-401
    • Foody, G.M.1    McCulloch, M.B.2    Yates, W.B.3
  • 42
    • 0013387468 scopus 로고    scopus 로고
    • Decision tree classification of landcover from remotely sensed data
    • FRIEDL, M. A., and BRODLEY, C. E., 1997. Decision tree classification of landcover from remotely sensed data. International Journal of Remote Sensing, 18:711–725.
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 711-725
    • Friedl, M.A.1    Brodley, C.E.2
  • 44
    • 0034112572 scopus 로고    scopus 로고
    • On the application of inductive machine learning tools to geographical analysis
    • GAHEGAN, M., 2000. On the application of inductive machine learning tools to geographical analysis. Geographical Analysis, 32:113–139.
    • (2000) Geographical Analysis , vol.32 , pp. 113-139
    • Gahegan, M.1
  • 45
    • 0001793365 scopus 로고    scopus 로고
    • Some solutions to neural network configuration problems for the classification of complex geographic datasets
    • GAHEGAN, M., GERMAN, G., and WEST, G., 1999. Some solutions to neural network configuration problems for the classification of complex geographic datasets. Geographical Systems, 6:3–22.
    • (1999) Geographical Systems , vol.6 , pp. 3-22
    • Gahegan, M.1    German, G.2    West, G.3
  • 46
    • 0034886609 scopus 로고    scopus 로고
    • The Integration of Geographic Visualization with Databases, Data Mining, Knowledge Construction and Geocomputation
    • GAHEGAN, M., HARROWER, M., RHYNE, T.-M., and WACHOWICZ, M., 2001. The Integration of Geographic Visualization with Databases, Data Mining, Knowledge Construction and Geocomputation. Cartography and Geographic Information Science, 28:29–44.
    • (2001) Cartography and Geographic Information Science , vol.28 , pp. 29-44
    • Gahegan, M.1    Harrower, M.2    Rhyne, T.3    Wachowicz, M.4
  • 47
    • 0001935405 scopus 로고    scopus 로고
    • Transforming Rules and Trees into Comprehensive Knowledge Structures
    • Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R., (eds), Cambridge, MA: AAAI/MIT Press
    • GAINS, B. R., 1996. “ Transforming Rules and Trees into Comprehensive Knowledge Structures ”. In Advances in Knowledge Discovery and Data Mining, Edited by:Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., 205–228. Cambridge, MA:AAAI/MIT Press.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 205-228
    • Gains, B.R.1
  • 50
    • 0030430491 scopus 로고    scopus 로고
    • Neural network architectures for the classification of temporal image sequences
    • GERMAN, G., and GAHEGAN, M., 1996. Neural network architectures for the classification of temporal image sequences. Computers and Geosciences, 22 (9):969–979.
    • (1996) Computers and Geosciences , vol.22 , Issue.9 , pp. 969-979
    • German, G.1    Gahegan, M.2
  • 52
    • 0013337590 scopus 로고    scopus 로고
    • Hyperspectral imaging of the earth: Remote analytical chemistry in an uncorrelated environment
    • GOETZ, A. F. H., and CURTISS, B., 1996. Hyperspectral imaging of the earth:remote analytical chemistry in an uncorrelated environment. Field Analytical Chemistry and Technology, 1:67–76.
    • (1996) Field Analytical Chemistry and Technology , vol.1 , pp. 67-76
    • Goetz, A.F.H.1    Curtiss, B.2
  • 53
    • 0001303071 scopus 로고
    • Is Statistix Inferens the geographcial name for a wild goose?
    • GOULD, P. R., 1970. Is Statistix Inferens the geographcial name for a wild goose?. Economic Geography, 46:539–548.
    • (1970) Economic Geography , vol.46 , pp. 539-548
    • Gould, P.R.1
  • 54
    • 0003850759 scopus 로고    scopus 로고
    • New York: Syracuse University Press
    • GOULD, P. R., 1999. Becoming a Geographer, New York:Syracuse University Press.
    • (1999) Becoming a Geographer
    • Gould, P.R.1
  • 59
    • 0031997059 scopus 로고    scopus 로고
    • Supervised classification in high dimensional space: Geometrical, statistical and asymptotical properties of multivariate data
    • JIMENEZ, L., and LANDGREBE, D., 1998. Supervised classification in high dimensional space:geometrical, statistical and asymptotical properties of multivariate data. IEEE Transactions on System, Man and Cybernetics, 28C:39–54.
    • (1998) IEEE Transactions on System, Man and Cybernetics , vol.28C , pp. 39-54
    • Jimenez, L.1    Landgrebe, D.2
  • 60
    • 0033559245 scopus 로고    scopus 로고
    • Multi-resolution fragmentation profiles for assessing hierarchically structured landscape patterns
    • JOHNSON, G. D., MYERS, W. L., PATIL, G. P., and TAILLIE, C., 1999. Multi-resolution fragmentation profiles for assessing hierarchically structured landscape patterns. Ecological Modelling, 116:293–301.
    • (1999) Ecological Modelling , vol.116 , pp. 293-301
    • Johnson, G.D.1    Myers, W.L.2    Patil, G.P.3    Taillie, C.4
  • 63
    • 0033245952 scopus 로고    scopus 로고
    • What shall we do with the data we are expecting from upcoming earth observation satellites?
    • KAHN, R., and BRAVERMAN, A., 1999. What shall we do with the data we are expecting from upcoming earth observation satellites?. Journal of Computational and Graphical Statistics, 8:575–588.
    • (1999) Journal of Computational and Graphical Statistics , vol.8 , pp. 575-588
    • Kahn, R.1    Braverman, A.2
  • 64
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • KANELLOPOULOS, I., and WILKINSON, G., 1997. Strategies and best practice for neural network image classification. International Journal of Remote Sensing, 18:711–725.
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 711-725
    • Kanellopoulos, I.1    Wilkinson, G.2
  • 70
    • 0001822539 scopus 로고    scopus 로고
    • Spatial scan statistics: Models, calculations, and applications
    • Glaz J.B., (ed), Boston: Boston Press
    • KULLDORFF, M., 1999. “ Spatial scan statistics:models, calculations, and applications ”. In Scan Statistics and Applications, Edited by:Glaz, J. B., 303–322. Boston:Boston Press.
    • (1999) Scan Statistics and Applications , pp. 303-322
    • Kulldorff, M.1
  • 71
    • 85024507047 scopus 로고    scopus 로고
    • Proceedings of 3rd International Conference on GeoComputation, University of Bristol, United Kingdom, 17–19 September 1998
    • LAFFAN, S., Visualising neural network training in geographic space. Proceedings of 3rd International Conference on GeoComputation, University of Bristol, United Kingdom, 17–19 September 1998. URL:http://www.geocomputation.Org/l 998/48/gc_48.htm.
    • Visualising neural network training in geographic space
    • Laffan, S.1
  • 72
    • 0002075544 scopus 로고    scopus 로고
    • Information extraction principles and methods for multispectral and hyperspectral image data
    • Chen C.H., (ed), River Edge, NJ, USA: World Scientific
    • LANDGREBE, D., 1999. “ Information extraction principles and methods for multispectral and hyperspectral image data ”. In Information Processing for Remote Sensing, Edited by:Chen, C. H., 3–38. River Edge, NJ, USA:World Scientific.
    • (1999) Information Processing for Remote Sensing , pp. 3-38
    • Landgrebe, D.1
  • 74
    • 0026359465 scopus 로고
    • Decision tree and rule induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments
    • LEES, B. G., and RITMAN, K., 1991. Decision tree and rule induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments. Environmental Management, 15:823–831.
    • (1991) Environmental Management , vol.15 , pp. 823-831
    • Lees, B.G.1    Ritman, K.2
  • 75
    • 0013380457 scopus 로고    scopus 로고
    • Symbolic kernel discriminant analysis
    • Rizzi A., Vichi M., Bock H.H., (eds), Berlin: Springer-Verlag
    • LISSOIR, S., and RASSON, J.-P., 1998. “ Symbolic kernel discriminant analysis ”. In Advances in Data Science and Classification, Edited by:Rizzi, A., Vichi, M., and Bock, H. H., 417–423. Berlin:Springer-Verlag.
    • (1998) Advances in Data Science and Classification , pp. 417-423
    • Lissoir, S.1    Rasson, J.2
  • 80
    • 84865486245 scopus 로고
    • Principles of geostatistics
    • MATHERON, G., 1963. Principles of geostatistics. Economic Geology, 58:1246–1266.
    • (1963) Economic Geology , vol.58 , pp. 1246-1266
    • Matheron, G.1
  • 85
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • MOLLER, M. F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6:525–533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 88
    • 0038877757 scopus 로고    scopus 로고
    • An applied statistician's creed
    • NESTER, M., 1996. An applied statistician's creed. Applied Statistics, 45:401–410.
    • (1996) Applied Statistics , vol.45 , pp. 401-410
    • Nester, M.1
  • 89
    • 0026364187 scopus 로고
    • A spatial analysis research agenda
    • Masser I., Blakemore M., (eds), London: Longman
    • OPENSHAW, S., 1991. “ A spatial analysis research agenda ”. In Handling Geographic Information, Edited by:Masser, I., and Blakemore, M., 18–37. London:Longman.
    • (1991) Handling Geographic Information , pp. 18-37
    • Openshaw, S.1
  • 90
    • 0002796777 scopus 로고
    • Modelling spatial interaction using a neural net
    • Fischer M.M., Nijkamp P., (eds), London: Springer-Verlag
    • OPENSHAW, S., 1993. “ Modelling spatial interaction using a neural net ”. In Geographic Information Systems, Spatial Modelling and Policy Evaluation, Edited by:Fischer, M. M., and Nijkamp, P., 147–164. London:Springer-Verlag.
    • (1993) Geographic Information Systems, Spatial Modelling and Policy Evaluation , pp. 147-164
    • Openshaw, S.1
  • 91
    • 0013428514 scopus 로고
    • Exploratory space-time-attribute pattern analysers
    • Fotheringham S., Rogerson P., (eds), London: Taylor and Francis
    • OPENSHAW, S., 1994. “ Exploratory space-time-attribute pattern analysers ”. In Spatial Analysis and GIS, Edited by:Fotheringham, S., and Rogerson, P., London:Taylor and Francis.
    • (1994) Spatial Analysis and GIS
    • Openshaw, S.1
  • 92
    • 0002859098 scopus 로고    scopus 로고
    • GeoComputation
    • Openshaw S., Abrahart A.J., (eds), London: Taylor and Francis
    • OPENSHAW, S., 2000. “ GeoComputation ”. In GeoComputation, Edited by:Openshaw, S., and Abrahart, A. J., 1–31. London:Taylor and Francis.
    • (2000) GeoComputation , pp. 1-31
    • Openshaw, S.1
  • 96
    • 0013383651 scopus 로고    scopus 로고
    • Testing spacetime and more complex hyperspace geographical analysis tools
    • Southampton, UK: University of Southampton
    • OPENSHAW, S., TURNER, A., TURTON, I., MACGILL, J., and BRUNSDON, C., 1999. “ Testing spacetime and more complex hyperspace geographical analysis tools ”. In GIS Research UK '99, 89–102. Southampton, UK:University of Southampton.
    • (1999) GIS Research UK '99 , pp. 89-102
    • Openshaw, S.1    Turner, A.2    Turton, I.3    Macgill, J.4    Brunsdon, C.5
  • 97
    • 84950640386 scopus 로고
    • Estimation methods for models of spatial interaction
    • ORD, J., 1975. Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70:120–126.
    • (1975) Journal of the American Statistical Association , vol.70 , pp. 120-126
    • Ord, J.1
  • 98
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural networks and maximum-likelihood classifiers for urban land use classification
    • PAOLA, J. D., and SCHOWENGERDT, R. A., 1995. A detailed comparison of backpropagation neural networks and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geosciences and Remote Sensing, 33:981–996.
    • (1995) IEEE Transactions on Geosciences and Remote Sensing , vol.33 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 99
    • 0000856854 scopus 로고
    • Deduction, induction and hypothesis
    • PEIRCE, C. S., 1878. Deduction, induction and hypothesis. Popular Science Monthly, 13:470–482.
    • (1878) Popular Science Monthly , vol.13 , pp. 470-482
    • Peirce, C.S.1
  • 104
    • 0000245470 scopus 로고
    • Selecting a classification method by cross validation
    • SCHAFFER, C., 1993. Selecting a classification method by cross validation. Machine Learning, 13:135–143.
    • (1993) Machine Learning , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 106
    • 0003089977 scopus 로고    scopus 로고
    • Integrating inductive and deductive reasoning for data mining
    • Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R., (eds), Cambridge, Mass: AAAI/MIT Press
    • SIMOUDIS, E., LIVEZEY, B., and KERBER, R., 1996. “ Integrating inductive and deductive reasoning for data mining ”. In Advances in Knowledge Discovery and Data Mining, Edited by:Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., 353–374. Cambridge, Mass:AAAI/MIT Press.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 353-374
    • Simoudis, E.1    Livezey, B.2    Kerber, R.3
  • 107
    • 0000030805 scopus 로고
    • Extreme value theory
    • New York: John Wiley and Sons, supplement
    • SMITH, R., 1990. “ Extreme value theory ”. In Handbook of Applicable Mathematics, New York:John Wiley and Sons. supplement
    • (1990) Handbook of Applicable Mathematics
    • Smith, R.1
  • 108
    • 0033758151 scopus 로고    scopus 로고
    • Data mining: Data analysis on a grand scale?
    • September, September, 2000
    • SMYTHE, P., September 2000. “ Data mining:Data analysis on a grand scale? ”. In Statistical Methods in Medical Research September, 2000
    • (2000) Statistical Methods in Medical Research
    • Smythe, P.1
  • 111
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and interpreting measures of thematic classification accuracy
    • STEHMAN, S. V., 1997. Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of the Environment, 62:77–89.
    • (1997) Remote Sensing of the Environment , vol.62 , pp. 77-89
    • Stehman, S.V.1
  • 113
    • 0004239666 scopus 로고
    • New York: John Wiley and Sons
    • THOMPSON, S. K., 1992. Sampling, New York:John Wiley and Sons.
    • (1992) Sampling
    • Thompson, S.K.1
  • 114
    • 0000565591 scopus 로고
    • A compyter movie simulating urban growth in the Detroit region
    • TOBLER, W., 1970. A compyter movie simulating urban growth in the Detroit region. Economic Geography, 46:234–240.
    • (1970) Economic Geography , vol.46 , pp. 234-240
    • Tobler, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.