메뉴 건너뛰기




Volumn 49, Issue 1, 2010, Pages 118-130

Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity

Author keywords

Artificial neural networks; Electrical resistivity; Generalized relationships; Soils; Thermal resistivity

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK MODELS; COMPACTION DENSITIES; DEGREE OF SATURATIONS; ELECTRICAL RESISTIVITY; ENGINEERING PROJECT; GROUND MODIFICATION; HIGH VOLTAGE; MOISTURE CONTENTS; NUCLEAR WASTE DISPOSAL; POWER CABLES; SOIL TYPES; THERMAL RESISTIVITY;

EID: 71849087174     PISSN: 12900729     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijthermalsci.2009.06.008     Document Type: Article
Times cited : (73)

References (64)
  • 1
    • 0000885408 scopus 로고
    • Estimating water content of soils from electrical resistivity
    • Kalinski R.J., and Kelly W.E. Estimating water content of soils from electrical resistivity. Geotechnical Testing Journal 16 3 (1993) 323-329
    • (1993) Geotechnical Testing Journal , vol.16 , Issue.3 , pp. 323-329
    • Kalinski, R.J.1    Kelly, W.E.2
  • 2
    • 0021442348 scopus 로고
    • The electrical resistivity characteristics of compacted clays
    • McCarter W. The electrical resistivity characteristics of compacted clays. Geotechnique 34 2 (1984) 263-267
    • (1984) Geotechnique , vol.34 , Issue.2 , pp. 263-267
    • McCarter, W.1
  • 3
    • 0000500650 scopus 로고
    • Determination of hydraulic conductivities by surface geoelectrical methods
    • S. Ward, Ed, Soc. Explor. Geophys
    • O. Mazac, M. Cislerove, W.E. Kelly, I. Landa, D. Venhodova, Determination of hydraulic conductivities by surface geoelectrical methods, in: S. Ward, (Ed.), Geotechnical and Environmental Geophysics, Vol II, Soc. Explor. Geophys. (1990) 125-131.
    • (1990) Geotechnical and Environmental Geophysics , vol.2 , pp. 125-131
    • Mazac, O.1    Cislerove, M.2    Kelly, W.E.3    Landa, I.4    Venhodova, D.5
  • 4
    • 1842520477 scopus 로고
    • Electrical resistivity used to measure liquefaction of sand
    • Ronald A.E., and Ronald C.G. Electrical resistivity used to measure liquefaction of sand. Journal of Geotechnical Engineering 108 GT5 (1982) 779-783
    • (1982) Journal of Geotechnical Engineering , vol.108 , Issue.GT5 , pp. 779-783
    • Ronald, A.E.1    Ronald, C.G.2
  • 5
    • 3342922468 scopus 로고
    • Performance of an Electrical Resistivity Technique for Detecting and Locating Geomembrane Failures
    • Denver, USA
    • D.W. Schultz, B.M. Duff, W.R. Peters, Performance of an Electrical Resistivity Technique for Detecting and Locating Geomembrane Failures, International Conference on Geomembranes, Denver, USA, (1984) 445-449.
    • (1984) International Conference on Geomembranes , pp. 445-449
    • Schultz, D.W.1    Duff, B.M.2    Peters, W.R.3
  • 8
    • 0018996730 scopus 로고
    • The influence of electro-osmosis on metallic piles in clay
    • Butterfield R., and Jhonston I.W. The influence of electro-osmosis on metallic piles in clay. Geotechnique 30 1 (1980) 17-38
    • (1980) Geotechnique , vol.30 , Issue.1 , pp. 17-38
    • Butterfield, R.1    Jhonston, I.W.2
  • 10
    • 1842520480 scopus 로고
    • An investigation of the use of the four electrode probe for measuring soil salinity in situ
    • Shea P.F., and Luthin J.N. An investigation of the use of the four electrode probe for measuring soil salinity in situ. Soil Science 92 (1961) 331-339
    • (1961) Soil Science , vol.92 , pp. 331-339
    • Shea, P.F.1    Luthin, J.N.2
  • 13
  • 14
    • 0033170208 scopus 로고    scopus 로고
    • A generalized relationship to estimate thermal resistivity of soils
    • Rao M.V.B.B.G., and Singh D.N. A generalized relationship to estimate thermal resistivity of soils. Canadian Geotechnical Journal 36 4 (1999) 767-773
    • (1999) Canadian Geotechnical Journal , vol.36 , Issue.4 , pp. 767-773
    • Rao, M.V.B.B.G.1    Singh, D.N.2
  • 15
    • 0034281205 scopus 로고    scopus 로고
    • Generalized relationships for estimating soil thermal resistivity
    • Singh D.N., and Devid K. Generalized relationships for estimating soil thermal resistivity. Experimental. Thermal and Fluid Science 22 (2000) 133-143
    • (2000) Experimental. Thermal and Fluid Science , vol.22 , pp. 133-143
    • Singh, D.N.1    Devid, K.2
  • 18
    • 9744223763 scopus 로고    scopus 로고
    • Generalized relationship for determining soil electrical resistivity from its thermal resistivity
    • Sreedeep S., Reshma A.C., and Singh D.N. Generalized relationship for determining soil electrical resistivity from its thermal resistivity. Experimental Thermal and Fluid Science 29 (2005) 217-226
    • (2005) Experimental Thermal and Fluid Science , vol.29 , pp. 217-226
    • Sreedeep, S.1    Reshma, A.C.2    Singh, D.N.3
  • 20
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin M.A., Jaksa M.B., and Maier H.R. Artificial neural network applications in geotechnical engineering. Australian Geomechanics 36 1 (2001) 49-62
    • (2001) Australian Geomechanics , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 21
    • 23644459214 scopus 로고    scopus 로고
    • Artificial neural network for stress-strain behavior of sandy soils: knowledge based verification
    • Banimahd M., Yasrobi S.S., and Woodward P. Artificial neural network for stress-strain behavior of sandy soils: knowledge based verification. Computers and Geotechnics 32 (2005) 377-386
    • (2005) Computers and Geotechnics , vol.32 , pp. 377-386
    • Banimahd, M.1    Yasrobi, S.S.2    Woodward, P.3
  • 22
    • 34547124842 scopus 로고    scopus 로고
    • The applicability of neural networks in the determination of soil properties
    • Caglar N., and Arman H. The applicability of neural networks in the determination of soil properties. Bulletin of Engineering Geology and the Environment 66 (2007) 295-301
    • (2007) Bulletin of Engineering Geology and the Environment , vol.66 , pp. 295-301
    • Caglar, N.1    Arman, H.2
  • 23
    • 33751206829 scopus 로고    scopus 로고
    • Use of artificial neural networks in the prediction of liquefaction resistance of sands
    • Kim Y.S., and Kim B.T. Use of artificial neural networks in the prediction of liquefaction resistance of sands. Journal of Geotechnical and Geoenvironmental Engineering 132 11 (2006) 1502-1504
    • (2006) Journal of Geotechnical and Geoenvironmental Engineering , vol.132 , Issue.11 , pp. 1502-1504
    • Kim, Y.S.1    Kim, B.T.2
  • 24
    • 33745276242 scopus 로고    scopus 로고
    • Prediction of soil composition from CPT data using general regression neural network
    • Kurup P.U., and Griffin E.P. Prediction of soil composition from CPT data using general regression neural network. Journal of Computing in Civil Engineering 20 4 (2006) 281-289
    • (2006) Journal of Computing in Civil Engineering , vol.20 , Issue.4 , pp. 281-289
    • Kurup, P.U.1    Griffin, E.P.2
  • 25
    • 71849088313 scopus 로고    scopus 로고
    • Artificial neural network prediction models for soil compaction and permeability
    • Sinha S.K., and Wang M.C. Artificial neural network prediction models for soil compaction and permeability. Geotechnical and Geological Engineering (August 17, 2007)
    • (2007) Geotechnical and Geological Engineering
    • Sinha, S.K.1    Wang, M.C.2
  • 26
    • 0030472893 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using artificial neural networks
    • Lee I.M., and Lee J.H. Prediction of pile bearing capacity using artificial neural networks. Computers and Geotechnics 18 3 (1996) 189-200
    • (1996) Computers and Geotechnics , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 29
    • 47549093934 scopus 로고    scopus 로고
    • Artificial neural networks for predicting soil thermal resistivity
    • Erzin Y., Rao B.H., and Singh D.N. Artificial neural networks for predicting soil thermal resistivity. International Journal of Thermal Science 47 10 (2008) 1347-1358
    • (2008) International Journal of Thermal Science , vol.47 , Issue.10 , pp. 1347-1358
    • Erzin, Y.1    Rao, B.H.2    Singh, D.N.3
  • 31
    • 35348858127 scopus 로고    scopus 로고
    • Predictions of vapor pressures of aqueous desiccants for cooling applications by using artificial neural networks
    • Gandhidasan P., and Mohandes M.A. Predictions of vapor pressures of aqueous desiccants for cooling applications by using artificial neural networks. Applied Thermal Engineering 28 (2008) 126-135
    • (2008) Applied Thermal Engineering , vol.28 , pp. 126-135
    • Gandhidasan, P.1    Mohandes, M.A.2
  • 36
    • 0037362405 scopus 로고    scopus 로고
    • A neural network approach to describing the fretting fatigue in aluminum-steel couplings
    • Orbanić P., and Fajdiga M. A neural network approach to describing the fretting fatigue in aluminum-steel couplings. International Journal of Fatigue 25 (2003) 201-207
    • (2003) International Journal of Fatigue , vol.25 , pp. 201-207
    • Orbanić, P.1    Fajdiga, M.2
  • 37
    • 30344474020 scopus 로고    scopus 로고
    • Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation
    • Sonmez H., Gokceoglu C., Nefeslioglu H.A., and Kayabasi A. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanical and Mining Sciences 43 2 (2005) 224-235
    • (2005) International Journal of Rock Mechanical and Mining Sciences , vol.43 , Issue.2 , pp. 224-235
    • Sonmez, H.1    Gokceoglu, C.2    Nefeslioglu, H.A.3    Kayabasi, A.4
  • 38
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Kaastra I., and Boyd M. Designing a neural network for forecasting financial and economic time series. Neurocomputing 10 3 (1996) 215-236
    • (1996) Neurocomputing , vol.10 , Issue.3 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 39
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • Kanellopoulas, and Wilkinson G.G. Strategies and best practice for neural network image classification. International Journal of Remote Sensing 18 (1997) 711-725
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 711-725
    • Kanellopoulas1    Wilkinson, G.G.2
  • 41
    • 0036722056 scopus 로고    scopus 로고
    • ANN back-propagation prediction model for fracture toughness in microalloy steel
    • Haque M.E., and Sudhakar K.V. ANN back-propagation prediction model for fracture toughness in microalloy steel. International Journal of Fatigue 24 (2002) 1003-1010
    • (2002) International Journal of Fatigue , vol.24 , pp. 1003-1010
    • Haque, M.E.1    Sudhakar, K.V.2
  • 43
    • 16444382403 scopus 로고    scopus 로고
    • Automated quality assessment of stone aggregates based on laser imaging and a neural network
    • Kim H., Rauch A.F., and Haas C.T. Automated quality assessment of stone aggregates based on laser imaging and a neural network. Journal of Computing in Civil Engineering 18 1 (2004) 58-64
    • (2004) Journal of Computing in Civil Engineering , vol.18 , Issue.1 , pp. 58-64
    • Kim, H.1    Rauch, A.F.2    Haas, C.T.3
  • 44
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modeling complex systems
    • Goh A.T.C. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering 9 (1995) 143-151
    • (1995) Artificial Intelligence in Engineering , vol.9 , pp. 143-151
    • Goh, A.T.C.1
  • 45
    • 0029415712 scopus 로고
    • Modeling soil correlations using neural networks
    • Goh A.T.C. Modeling soil correlations using neural networks. Journal of Computing in Civil Engineering 9 4 (1995) 275-278
    • (1995) Journal of Computing in Civil Engineering , vol.9 , Issue.4 , pp. 275-278
    • Goh, A.T.C.1
  • 46
    • 33644906366 scopus 로고    scopus 로고
    • Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil
    • Amegashie F., Shang J.Q., Yanful E., Ding W., and Al-Martini S. Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil. Canadian Geotechnical Journal 43 (2006) 100-109
    • (2006) Canadian Geotechnical Journal , vol.43 , pp. 100-109
    • Amegashie, F.1    Shang, J.Q.2    Yanful, E.3    Ding, W.4    Al-Martini, S.5
  • 47
    • 47549110503 scopus 로고    scopus 로고
    • Reduction prediction error by transforming input data for neural networks
    • Shi J.J. Reduction prediction error by transforming input data for neural networks. Journal of Computing in Civil Engineering 18 2 (2000) 105-114
    • (2000) Journal of Computing in Civil Engineering , vol.18 , Issue.2 , pp. 105-114
    • Shi, J.J.1
  • 48
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin M.A., Maier H.R., and Jaksa M.B. Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering 18 2 (2004) 105-114
    • (2004) Journal of Computing in Civil Engineering , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 49
    • 17444421871 scopus 로고    scopus 로고
    • Neural network prediction of pullout capacity of marquee ground anchors
    • Shahin M.A., and Jaksa M.B. Neural network prediction of pullout capacity of marquee ground anchors. Computers and Geotechnics 32 (2005) 153-163
    • (2005) Computers and Geotechnics , vol.32 , pp. 153-163
    • Shahin, M.A.1    Jaksa, M.B.2
  • 51
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 (1993) 525-533
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 54
    • 14744282320 scopus 로고    scopus 로고
    • A generalized procedure for determining thermal resistivity of soils
    • Dalinaidu A., and Singh D.N. A generalized procedure for determining thermal resistivity of soils. International Journal of Thermal Sciences 43 1 (2004) 43-51
    • (2004) International Journal of Thermal Sciences , vol.43 , Issue.1 , pp. 43-51
    • Dalinaidu, A.1    Singh, D.N.2
  • 56
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of Royal Statistical Society B 36 (1974) 111-147
    • (1974) Journal of Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 57
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feed forward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 58
    • 2442712661 scopus 로고    scopus 로고
    • Artificial intelligence techniques for the design and analysis of deep foundations
    • Nawari N.O., Liang R., and Nusariat J. Artificial intelligence techniques for the design and analysis of deep foundations. Electronic Journal of Geotechnical Engineering (1999). http://geotech.civeng.okstate.edu/ejge/ppr9909/index.html
    • (1999) Electronic Journal of Geotechnical Engineering
    • Nawari, N.O.1    Liang, R.2    Nusariat, J.3
  • 59
    • 0005380346 scopus 로고
    • Neural Networks Primer, Part III
    • Caudill M. Neural Networks Primer, Part III. Al Expert 3 6 (1988) 59-61
    • (1988) Al Expert , vol.3 , Issue.6 , pp. 59-61
    • Caudill, M.1
  • 61
    • 0035306877 scopus 로고    scopus 로고
    • A rule based fuzzy model for the prediction of petrophysical rock parameters
    • Finol J., Guo Y.K., and Jing X.D. A rule based fuzzy model for the prediction of petrophysical rock parameters. Journal of Petroleum Science and Engineering 29 (2001) 97-113
    • (2001) Journal of Petroleum Science and Engineering , vol.29 , pp. 97-113
    • Finol, J.1    Guo, Y.K.2    Jing, X.D.3
  • 62
    • 0036785198 scopus 로고    scopus 로고
    • A fuzzy triangular chart to predict the uniaxial compressive strength of Ankara agglomerates from their petrographic composition
    • Gokceoglu C. A fuzzy triangular chart to predict the uniaxial compressive strength of Ankara agglomerates from their petrographic composition. Engineering Geology 66 (2002) 39-51
    • (2002) Engineering Geology , vol.66 , pp. 39-51
    • Gokceoglu, C.1
  • 63
    • 38849209843 scopus 로고    scopus 로고
    • Artificial neural networks approach for swell pressure versus soil suction behavior
    • Erzin Y. Artificial neural networks approach for swell pressure versus soil suction behavior. Canadian Geotechnical Journal 44 (2007) 1215-1223
    • (2007) Canadian Geotechnical Journal , vol.44 , pp. 1215-1223
    • Erzin, Y.1
  • 64
    • 42449124121 scopus 로고    scopus 로고
    • Artificial neural networks approach for zeta potential of montmorillonite in the presence of different cations
    • Yukselen Y., and Erzin Y. Artificial neural networks approach for zeta potential of montmorillonite in the presence of different cations. Environmental Geology 54 (2008) 1059-1066
    • (2008) Environmental Geology , vol.54 , pp. 1059-1066
    • Yukselen, Y.1    Erzin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.