메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

Author keywords

[No Author keywords available]

Indexed keywords

CELLOBIOSE QUINONE OXIDOREDUCTASE; CELLULOSE; COPPER; CYTOCHROME; FLAVINE ADENINE NUCLEOTIDE; FUNGAL ENZYME; HAEM PROPIONATE; HEME; LYTIC POLYSACCHARIDE MONOOXYGENASE; OXYGEN; PROPIONIC ACID DERIVATIVE; UNCLASSIFIED DRUG; UNSPECIFIC MONOOXYGENASE; CELLOBIOSE-QUINONE OXIDOREDUCTASE; FUNGAL PROTEIN; OXIDOREDUCTASE; PROTEIN BINDING;

EID: 84936851753     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms8542     Document Type: Article
Times cited : (201)

References (62)
  • 1
    • 33846951759 scopus 로고    scopus 로고
    • Biomass recalcitrance: Engineering plants and enzymes for biofuel production
    • Himmel, M. E. et al. Biomass recalcitrance: engineering plants and enzymes for biofuel production. Science 315, 804-807 (2007).
    • (2007) Science , vol.315 , pp. 804-807
    • Himmel, M.E.1
  • 2
    • 84872926780 scopus 로고    scopus 로고
    • Sustainable bioenergy production from marginal lands in the US Midwest
    • Gelfand, I. et al. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493, 514-517 (2013).
    • (2013) Nature , vol.493 , pp. 514-517
    • Gelfand, I.1
  • 3
    • 0016350391 scopus 로고
    • Oxidation: An important enzyme reaction in fungal degradation of cellulose
    • Eriksson, K.-E., Pettersson, B. & Westermark, U. Oxidation: an important enzyme reaction in fungal degradation of cellulose. FEBS Lett. 49, 282-285 (1974).
    • (1974) FEBS Lett. , vol.49 , pp. 282-285
    • Eriksson, K.-E.1    Pettersson, B.2    Westermark, U.3
  • 4
    • 0026540422 scopus 로고
    • Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases
    • Bao, W. J. & Renganathan, R. Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett. 302, 77-80 (1992).
    • (1992) FEBS Lett. , vol.302 , pp. 77-80
    • Bao, W.J.1    Renganathan, R.2
  • 5
    • 0028984129 scopus 로고
    • Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood degrading enzyme. Studies on cellulose, xylan and synthetic lignin
    • Henriksson, G., Ander, P., Pettersson, B. & Pettersson, G. Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Appl. Microbiol. Biotechnol. 42, 790-796 (1995).
    • (1995) Appl. Microbiol. Biotechnol. , vol.42 , pp. 790-796
    • Henriksson, G.1    Ander, P.2    Pettersson, B.3    Pettersson, G.4
  • 6
    • 0035813522 scopus 로고    scopus 로고
    • Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor
    • Dumonceaux, T., Bartholomew, K., Valeanu, L., Charles, T. & Archibald, F. Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme Microb. Technol. 29, 478-489 (2001).
    • (2001) Enzyme Microb. Technol. , vol.29 , pp. 478-489
    • Dumonceaux, T.1    Bartholomew, K.2    Valeanu, L.3    Charles, T.4    Archibald, F.5
  • 7
    • 80053096980 scopus 로고    scopus 로고
    • Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw
    • Canam, T., Town, J. R., Tsang, A., McAllister, T. A. & Dumonceaux, T. J. Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresource Technol. 102, 10020-10027 (2011).
    • (2011) Bioresource Technol. , vol.102 , pp. 10020-10027
    • Canam, T.1    Town, J.R.2    Tsang, A.3    McAllister, T.A.4    Dumonceaux, T.J.5
  • 8
    • 77950948151 scopus 로고    scopus 로고
    • Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside family 61: Structure and function of a large enigmatic family
    • Harris, P. V. et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside family 61: structure and function of a large enigmatic family. Biochemistry 49, 3305-3316 (2010).
    • (2010) Biochemistry , vol.49 , pp. 3305-3316
    • Harris, P.V.1
  • 9
    • 77957727454 scopus 로고    scopus 로고
    • An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides
    • Vaaje-Kolstad, G. et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219-222 (2010).
    • (2010) Science , vol.330 , pp. 219-222
    • Vaaje-Kolstad, G.1
  • 10
    • 80053088478 scopus 로고    scopus 로고
    • Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components
    • Quinlan, R. J. et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl Acad. Sci. USA 108, 15079-15084 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 15079-15084
    • Quinlan, R.J.1
  • 12
    • 84899647519 scopus 로고    scopus 로고
    • Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation
    • Agger, J. W. et al. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc. Natl Acad. Sci. USA 111, 6287-6292 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 6287-6292
    • Agger, J.W.1
  • 14
    • 76049107428 scopus 로고    scopus 로고
    • Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa
    • Tian, C. et al. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc. Natl Acad. Sci. USA 106, 22157-22162 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 22157-22162
    • Tian, C.1
  • 15
    • 84055197660 scopus 로고    scopus 로고
    • Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa
    • Phillips, C. M., Beeson, IV W. T., Cate, J. H. & Marletta, M. A. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 6, 1399-1406 (2011).
    • (2011) ACS Chem. Biol. , vol.6 , pp. 1399-1406
    • Phillips, C.M.1    Beeson, W.T.2    Cate, J.H.3    Marletta, M.A.4
  • 16
    • 81755178934 scopus 로고    scopus 로고
    • Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61
    • Langston, J. A. et al. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl. Environ. Microbiol. 77, 7007-7015 (2011).
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 7007-7015
    • Langston, J.A.1
  • 17
    • 84855912007 scopus 로고    scopus 로고
    • Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases
    • Beeson, W. T., Phillips, C. M., Cate, J. H. D. & Marletta, M. A. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 134, 890-892 (2011).
    • (2011) J. Am. Chem. Soc. , vol.134 , pp. 890-892
    • Beeson, W.T.1    Phillips, C.M.2    Cate, J.H.D.3    Marletta, M.A.4
  • 18
    • 84878010957 scopus 로고    scopus 로고
    • Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw
    • Turbe-Doan, A., Arfi, Y., Record, E., Estrada-Alvarado, I. & Levasseur, A. Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Appl. Microbiol. Biotechnol. 97, 4873-4885 (2013).
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 4873-4885
    • Turbe-Doan, A.1    Arfi, Y.2    Record, E.3    Estrada-Alvarado, I.4    Levasseur, A.5
  • 19
    • 84922932945 scopus 로고    scopus 로고
    • Fungal cellulases
    • Payne, C. M. et al. Fungal cellulases. Chem. Rev. 115, 1308-1448 (2015).
    • (2015) Chem. Rev. , vol.115 , pp. 1308-1448
    • Payne, C.M.1
  • 20
    • 33745090845 scopus 로고    scopus 로고
    • Cellobiose dehydrogenase - A flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi
    • Zamocky, M. et al. Cellobiose dehydrogenase-a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr. Protein Pept. Sci. 7, 255-280 (2006).
    • (2006) Curr. Protein Pept. Sci. , vol.7 , pp. 255-280
    • Zamocky, M.1
  • 21
    • 79953182351 scopus 로고    scopus 로고
    • Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes
    • Harreither, W. et al. Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl. Environ. Microbiol. 77, 1804-1815 (2011).
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 1804-1815
    • Harreither, W.1
  • 22
    • 0030852180 scopus 로고    scopus 로고
    • Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1
    • Henriksson, G., Salumets, A., Divne, C. & Pettersson, G. Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1. Biochem. J. 324, 833-838 (1997).
    • (1997) Biochem. J. , vol.324 , pp. 833-838
    • Henriksson, G.1    Salumets, A.2    Divne, C.3    Pettersson, G.4
  • 23
    • 84861987031 scopus 로고    scopus 로고
    • Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases
    • Li, X. et al. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20, 1051-1061 (2012).
    • (2012) Structure , vol.20 , pp. 1051-1061
    • Li, X.1
  • 24
    • 84891926133 scopus 로고    scopus 로고
    • Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism
    • Kim, S., Ståhlberg, J., Sandgren, M., Paton, R. S. & Beckham, G. T. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc. Natl Acad. Sci. USA 111, 149-154 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 149-154
    • Kim, S.1    Ståhlberg, J.2    Sandgren, M.3    Paton, R.S.4    Beckham, G.T.5
  • 25
    • 0034650750 scopus 로고    scopus 로고
    • A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase
    • Hallberg, B. M. et al. A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure 8, 79-88 (2000).
    • (2000) Structure , vol.8 , pp. 79-88
    • Hallberg, B.M.1
  • 26
    • 0036303472 scopus 로고    scopus 로고
    • Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase
    • Hallberg, B. M., Henriksson, G., Pettersson, G. & Divne, C. Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J. Mol. Biol. 315, 421-434 (2002).
    • (2002) J. Mol. Biol. , vol.315 , pp. 421-434
    • Hallberg, B.M.1    Henriksson, G.2    Pettersson, G.3    Divne, C.4
  • 27
    • 0033523919 scopus 로고    scopus 로고
    • Natural engineering principles of electron tunnelling in biological oxidation-reduction
    • Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47-52 (1999).
    • (1999) Nature , vol.402 , pp. 47-52
    • Page, C.C.1    Moser, C.C.2    Chen, X.3    Dutton, P.L.4
  • 28
    • 85027948101 scopus 로고    scopus 로고
    • Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b2
    • Lederer, F. Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b2. Eur. Biophys. J. 40, 1283-1299 (2011).
    • (2011) Eur. Biophys. J. , vol.40 , pp. 1283-1299
    • Lederer, F.1
  • 30
    • 34247891557 scopus 로고    scopus 로고
    • Structural Characterization of flexible proteins using small-angle X-ray scattering
    • Bernado, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. Structural Characterization of flexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc. 129, 5656-5664 (2007).
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 5656-5664
    • Bernado, P.1    Mylonas, E.2    Petoukhov, M.V.3    Blackledge, M.4    Svergun, D.I.5
  • 31
    • 84859782518 scopus 로고    scopus 로고
    • New developments in the ATSAS program package for small-angle scattering data analysis
    • Petoukhov, M. V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342-350 (2012).
    • (2012) J. Appl. Crystallogr. , vol.45 , pp. 342-350
    • Petoukhov, M.V.1
  • 32
    • 84919820322 scopus 로고    scopus 로고
    • Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulose hydrolytic efficiency
    • Eibinger, M. et al. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulose hydrolytic efficiency. J. Biol. Chem. 289, 35929-35938 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 35929-35938
    • Eibinger, M.1
  • 33
    • 84877151161 scopus 로고    scopus 로고
    • Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the basidiomycota fungus Phanerochaete chrysosporium
    • Wu, M. et al. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the basidiomycota fungus Phanerochaete chrysosporium. J. Biol. Chem. 288, 12828-12839 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 12828-12839
    • Wu, M.1
  • 34
    • 84902205104 scopus 로고    scopus 로고
    • Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases
    • Forsberg, Z. et al. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc. Natl Acad. Sci. USA 111, 8446-8451 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 8446-8451
    • Forsberg, Z.1
  • 35
    • 55749088365 scopus 로고    scopus 로고
    • Haem electron transfer in peroxidases: The propionate e-pathway
    • Guallar, V. Haem electron transfer in peroxidases: the propionate e-pathway. J. Phys. Chem. B 112, 13460-13464 (2008).
    • (2008) J. Phys. Chem. B , vol.112 , pp. 13460-13464
    • Guallar, V.1
  • 36
    • 42749094404 scopus 로고    scopus 로고
    • Cloning, sequence analysis and heterologous expression in Pichia pastoris of a gene encoding a thermostable cellobiose dehydrogenase from Myriococcum thermophilum
    • Zamocky, M. et al. Cloning, sequence analysis and heterologous expression in Pichia pastoris of a gene encoding a thermostable cellobiose dehydrogenase from Myriococcum thermophilum. Protein Express. Purif. 59, 258-265 (2008).
    • (2008) Protein Express. Purif. , vol.59 , pp. 258-265
    • Zamocky, M.1
  • 37
    • 84875193804 scopus 로고    scopus 로고
    • Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes
    • Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41 (2013).
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 41
    • Levasseur, A.1    Drula, E.2    Lombard, V.3    Coutinho, P.M.4    Henrissat, B.5
  • 38
    • 84867753151 scopus 로고    scopus 로고
    • Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay
    • Kittl, R., Kracher, D., Burgstaller, D., Haltrich, D. & Ludwig, R. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol. Biofuels 5, 79 (2012).
    • (2012) Biotechnol. Biofuels , vol.5 , pp. 79
    • Kittl, R.1    Kracher, D.2    Burgstaller, D.3    Haltrich, D.4    Ludwig, R.5
  • 39
    • 84866154418 scopus 로고    scopus 로고
    • Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation
    • Sygmund, C. et al. Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl. Environ. Microbiol. 78, 6161-6171 (2012).
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 6161-6171
    • Sygmund, C.1
  • 40
    • 84870364865 scopus 로고    scopus 로고
    • Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenase
    • Flitsch, A. et al. Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenase. Enzyme Microb. Technol. 52, 60-67 (2013).
    • (2013) Enzyme Microb. Technol. , vol.52 , pp. 60-67
    • Flitsch, A.1
  • 41
    • 0027879008 scopus 로고
    • Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants
    • Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795-800 (1993).
    • (1993) J. Appl. Crystallogr. , vol.26 , pp. 795-800
    • Kabsch, W.1
  • 42
    • 34447508216 scopus 로고    scopus 로고
    • Phaser crystallographic software
    • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674 (2007).
    • (2007) J. Appl. Crystallogr. , vol.40 , pp. 658-674
    • McCoy, A.J.1
  • 43
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213-221 (2010).
    • (2010) Acta Crystallogr. D , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 45
    • 84889120137 scopus 로고
    • Improved methods for building protein models in electron density maps and the location of errors in these models
    • Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110-119 (1991).
    • (1991) Acta Crystallogr. A , vol.47 , pp. 110-119
    • Jones, T.A.1    Zou, J.Y.2    Cowan, S.W.3    Kjeldgaard, M.4
  • 46
    • 13244281317 scopus 로고    scopus 로고
    • Coot: Model-building tools for molecular graphics
    • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126-2132 (2004).
    • (2004) Acta Crystallogr. D , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 47
    • 84861425552 scopus 로고    scopus 로고
    • Linking crystallographic model and data quality
    • Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030-1033 (2012).
    • (2012) Science , vol.336 , pp. 1030-1033
    • Karplus, P.A.1    Diederichs, K.2
  • 49
    • 50249136103 scopus 로고    scopus 로고
    • Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7
    • Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171-1179 (2008).
    • (2008) Nat. Protoc. , vol.3 , pp. 1171-1179
    • Langer, G.1    Cohen, S.X.2    Lamzin, V.S.3    Perrakis, A.4
  • 50
    • 77950793231 scopus 로고    scopus 로고
    • Experimental phasing with SHELXC/D/E: Combining chain tracing with density modification
    • Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479-485 (2010).
    • (2010) Acta Crystallogr. D , vol.66 , pp. 479-485
    • Sheldrick, G.M.1
  • 51
    • 0028103275 scopus 로고
    • The CCP4 suite: Programs for protein crystallography
    • Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760-763 (1994).
    • (1994) Acta Crystallogr. D , vol.50 , pp. 760-763
  • 52
    • 79953763877 scopus 로고    scopus 로고
    • REFMAC5 for the refinement of macromolecular crystal structures
    • Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355-367 (2011).
    • (2011) Acta Crystallogr. D , vol.67 , pp. 355-367
    • Murshudov, G.N.1
  • 53
    • 0037237545 scopus 로고    scopus 로고
    • Automated main-chain model building by template matching and iterative fragment extension
    • Terwilliger, T. C. Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D 59, 38-44 (2003).
    • (2003) Acta Crystallogr. D , vol.59 , pp. 38-44
    • Terwilliger, T.C.1
  • 54
    • 68349097394 scopus 로고    scopus 로고
    • Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)
    • Hura, G. L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Method 6, 606-612 (2009).
    • (2009) Nat. Method , vol.6 , pp. 606-612
    • Hura, G.L.1
  • 55
    • 37149049312 scopus 로고    scopus 로고
    • X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution
    • Putnam, C. D., Hammel, M., Hura, G. L. & Tainer, J. A. X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191-285 (2007).
    • (2007) Q. Rev. Biophys. , vol.40 , pp. 191-285
    • Putnam, C.D.1    Hammel, M.2    Hura, G.L.3    Tainer, J.A.4
  • 58
    • 84936847118 scopus 로고    scopus 로고
    • Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering
    • Tria, G., Mertens, H. D. T., Kachala, M. & Svergun, D. I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2, 207-217 (2015).
    • (2015) IUCrJ , vol.2 , pp. 207-217
    • Tria, G.1    Mertens, H.D.T.2    Kachala, M.3    Svergun, D.I.4
  • 59
    • 36748998784 scopus 로고    scopus 로고
    • HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets
    • de Vries, S. J. et al. HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets. Proteins: Struc. Funct. Bioinformatics 69, 726-733 (2007).
    • (2007) Proteins: Struc. Funct. Bioinformatics , vol.69 , pp. 726-733
    • De Vries, S.J.1
  • 60
    • 77955391393 scopus 로고    scopus 로고
    • The HADDOCK web server for data-driven biomolecular docking
    • de Vries, S. J., van Dijk, M. & Bonvin, A. M. J. J. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883-897 (2010).
    • (2010) Nat. Protoc. , vol.5 , pp. 883-897
    • De Vries, S.J.1    Van Dijk, M.2    Bonvin, A.M.J.J.3
  • 61
    • 84871642848 scopus 로고    scopus 로고
    • WeNMR: Structural biology on the grid
    • Wassenaar et al. WeNMR: structural biology on the grid. J. Grid. Comp. 10, 743-767 (2012).
    • (2012) J. Grid. Comp. , vol.10 , pp. 743-767
    • Wassenaar1
  • 62
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-atom structure validation for macromolecular crystallography
    • Vincent, B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. 66, 12-21 (2010).
    • (2010) Acta Crystallogr. D. , vol.66 , pp. 12-21
    • Vincent, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.