메뉴 건너뛰기




Volumn 16, Issue 3, 2015, Pages 596-610

Variable selection in the presence of missing data: Resampling and imputation

Author keywords

Bootstrap imputation; Missing data; Resampling; Stability selection; Variable selection.

Indexed keywords

TUMOR MARKER;

EID: 84936746626     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxv003     Document Type: Article
Times cited : (51)

References (24)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716-723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 56449120785 scopus 로고    scopus 로고
    • Bolasso: Model consistent lasso estimation through the bootstrap
    • New York: Association for Computing Machinery
    • BACH, F. (2008). Bolasso: model consistent lasso estimation through the bootstrap. In Proc. 25th Int. Conf. Machine Learning, pp. 33-40. New York: Association for Computing Machinery
    • (2008) Proc. 25th Int. Conf. Machine Learning , pp. 33-40
    • Bach, F.1
  • 3
    • 79960143876 scopus 로고    scopus 로고
    • Model-consistent sparse estimation through the bootstrap
    • arXiv 0901.3202
    • BACH, F. (2009). Model-consistent sparse estimation through the bootstrap. Technical Report, arXiv:0901.3202
    • (2009) Technical Report
    • Bach, F.1
  • 6
    • 84883135749 scopus 로고    scopus 로고
    • Variable selection for multiply-imputed data with application to dioxin exposure study
    • CHEN, Q. AND WANG, S. (2013). Variable selection for multiply-imputed data with application to dioxin exposure study. Statistics in medicine 32(21), 3646-3659
    • (2013) Statistics in Medicine , vol.32 , Issue.21 , pp. 3646-3659
    • Chen, Q.1    Wang, S.2
  • 9
    • 77949733309 scopus 로고    scopus 로고
    • Variable selection in the cox regression model with covariates missing at random
    • GARCIA, R. I., IBRAHIM, J. G. AND ZHU, H. (2009). Variable selection in the cox regression model with covariates missing at random. Biometrics 66(1), 97-104
    • (2009) Biometrics , vol.66 , Issue.1 , pp. 97-104
    • Garcia, R.I.1    Ibrahim, J.G.2    Zhu, H.3
  • 10
    • 77949374262 scopus 로고    scopus 로고
    • Variable selection for regression models with missing data
    • GARCIA, R. I., IBRAHIM, J. G. AND ZHU, H. (2010). Variable selection for regression models with missing data. Statistica Sinica 20(1), 149
    • (2010) Statistica Sinica , vol.20 , Issue.1 , pp. 149
    • Garcia, R.I.1    Ibrahim, J.G.2    Zhu, H.3
  • 11
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • GEORGE, E. I. AND MCCULLOCH, R. E. (1997). Approaches for bayesian variable selection. Statistica Sinica 7, 339-374
    • (1997) Statistica Sinica , vol.7 , pp. 339-374
    • George, E.I.1    McCulloch, R.E.2
  • 13
    • 49549107073 scopus 로고    scopus 로고
    • Penalized estimating functions and variable selection in semiparametric regression models
    • JOHNSON, B. A., LIN, D. Y. AND ZENG, D. (2008). Penalized estimating functions and variable selection in semiparametric regression models. Journal of the American Statistical Association 103, 672-680
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 672-680
    • Johnson, B.A.1    Lin, D.Y.2    Zeng, D.3
  • 14
    • 80051863908 scopus 로고    scopus 로고
    • Variable selection when missing values are present: A case study
    • LACHENBRUCH, P. A. (2011). Variable selection when missing values are present: a case study. Statistical Methods in Medical Research 20(4), 429-444
    • (2011) Statistical Methods in Medical Research , vol.20 , Issue.4 , pp. 429-444
    • Lachenbruch, P.A.1
  • 17
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • RAGHUNATHAN, T. E., LEPKOWSKI, J. M., VAN HOEWYK, J. AND SOLENBERGER, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 27(1), 85-96
    • (2001) Survey Methodology , vol.27 , Issue.1 , pp. 85-96
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van Hoewyk, J.3    Solenberger, P.4
  • 18
    • 84863414529 scopus 로고    scopus 로고
    • Multiple imputation with diagnostics (mi) in r: Opening windows into the black box
    • SU, Y. S., GELMAN, A., HILL, J. AND YAJIMA, M. (2011). Multiple imputation with diagnostics (mi) in r: opening windows into the black box. Journal of Statistical Software 45(2), 1-31
    • (2011) Journal of Statistical Software , vol.45 , Issue.2 , pp. 1-31
    • Su, Y.S.1    Gelman, A.2    Hill, J.3    Yajima, M.4
  • 21
    • 79954455620 scopus 로고    scopus 로고
    • Eeboost: A general method for prediction and variable selection based on estimating equations
    • WOLFSON, J. (2011). Eeboost: a general method for prediction and variable selection based on estimating equations. Journal of the American Statistical Association 106(493), 296-305
    • (2011) Journal of the American Statistical Association , vol.106 , Issue.493 , pp. 296-305
    • Wolfson, J.1
  • 22
    • 48249126832 scopus 로고    scopus 로고
    • How should variable selection be performed with multiply imputed data?
    • WOOD, A. M., WHITE, I. R. AND ROYSTON, P. (2008). How should variable selection be performed with multiply imputed data? Statistics in Medicine 27(17), 3227-3246
    • (2008) Statistics in Medicine , vol.27 , Issue.17 , pp. 3227-3246
    • Wood, A.M.1    White, I.R.2    Royston, P.3
  • 23
    • 20744443786 scopus 로고    scopus 로고
    • Imputation and variable selection in linear regression models with missing covariates
    • YANG, X., BELIN, T. R. AND BOSCARDIN, W. J. (2005). Imputation and variable selection in linear regression models with missing covariates. Biometrics 61(2), 498-506
    • (2005) Biometrics , vol.61 , Issue.2 , pp. 498-506
    • Yang, X.1    Belin, T.R.2    Boscardin, W.J.3
  • 24
    • 84936794836 scopus 로고    scopus 로고
    • Multiple imputation in the presence of high-dimensional data
    • in press
    • ZHAO, Y. AND LONG, Q. (2013). Multiple imputation in the presence of high-dimensional data. Statistical Methods in Medical Research, in press
    • (2013) Statistical Methods in Medical Research
    • Zhao, Y.1    Long, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.