-
1
-
-
0016355478
-
A new look at the statistical model identification
-
AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716-723
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
2
-
-
56449120785
-
Bolasso: Model consistent lasso estimation through the bootstrap
-
New York: Association for Computing Machinery
-
BACH, F. (2008). Bolasso: model consistent lasso estimation through the bootstrap. In Proc. 25th Int. Conf. Machine Learning, pp. 33-40. New York: Association for Computing Machinery
-
(2008)
Proc. 25th Int. Conf. Machine Learning
, pp. 33-40
-
-
Bach, F.1
-
3
-
-
79960143876
-
Model-consistent sparse estimation through the bootstrap
-
arXiv 0901.3202
-
BACH, F. (2009). Model-consistent sparse estimation through the bootstrap. Technical Report, arXiv:0901.3202
-
(2009)
Technical Report
-
-
Bach, F.1
-
6
-
-
84883135749
-
Variable selection for multiply-imputed data with application to dioxin exposure study
-
CHEN, Q. AND WANG, S. (2013). Variable selection for multiply-imputed data with application to dioxin exposure study. Statistics in medicine 32(21), 3646-3659
-
(2013)
Statistics in Medicine
, vol.32
, Issue.21
, pp. 3646-3659
-
-
Chen, Q.1
Wang, S.2
-
8
-
-
3242708140
-
Least angle regression
-
EFRON, B., HASTIE, T., JOHNSTONE, I. AND TIBSHIRANI, R. (2004). Least angle regression. The Annals of statistics 32(2), 407-499
-
(2004)
The Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
9
-
-
77949733309
-
Variable selection in the cox regression model with covariates missing at random
-
GARCIA, R. I., IBRAHIM, J. G. AND ZHU, H. (2009). Variable selection in the cox regression model with covariates missing at random. Biometrics 66(1), 97-104
-
(2009)
Biometrics
, vol.66
, Issue.1
, pp. 97-104
-
-
Garcia, R.I.1
Ibrahim, J.G.2
Zhu, H.3
-
10
-
-
77949374262
-
Variable selection for regression models with missing data
-
GARCIA, R. I., IBRAHIM, J. G. AND ZHU, H. (2010). Variable selection for regression models with missing data. Statistica Sinica 20(1), 149
-
(2010)
Statistica Sinica
, vol.20
, Issue.1
, pp. 149
-
-
Garcia, R.I.1
Ibrahim, J.G.2
Zhu, H.3
-
11
-
-
0031526204
-
Approaches for Bayesian variable selection
-
GEORGE, E. I. AND MCCULLOCH, R. E. (1997). Approaches for bayesian variable selection. Statistica Sinica 7, 339-374
-
(1997)
Statistica Sinica
, vol.7
, pp. 339-374
-
-
George, E.I.1
McCulloch, R.E.2
-
12
-
-
34547837712
-
Variable selection under multiple imputation using the bootstrap in a prognostic study
-
HEYMANS, M.W., VAN BUUREN, S., KNOL, D. L., VAN MECHELEN, W. AND DE VET, H. C.W. (2007). Variable selection under multiple imputation using the bootstrap in a prognostic study. BMC Medical Research Methodology 7(1), 33
-
(2007)
BMC Medical Research Methodology
, vol.7
, Issue.1
, pp. 33
-
-
Heymans, M.W.1
Van Buuren, S.2
Knol, D.L.3
Van Mechelen, W.4
De Vet, H.C.W.5
-
13
-
-
49549107073
-
Penalized estimating functions and variable selection in semiparametric regression models
-
JOHNSON, B. A., LIN, D. Y. AND ZENG, D. (2008). Penalized estimating functions and variable selection in semiparametric regression models. Journal of the American Statistical Association 103, 672-680
-
(2008)
Journal of the American Statistical Association
, vol.103
, pp. 672-680
-
-
Johnson, B.A.1
Lin, D.Y.2
Zeng, D.3
-
14
-
-
80051863908
-
Variable selection when missing values are present: A case study
-
LACHENBRUCH, P. A. (2011). Variable selection when missing values are present: a case study. Statistical Methods in Medical Research 20(4), 429-444
-
(2011)
Statistical Methods in Medical Research
, vol.20
, Issue.4
, pp. 429-444
-
-
Lachenbruch, P.A.1
-
17
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
RAGHUNATHAN, T. E., LEPKOWSKI, J. M., VAN HOEWYK, J. AND SOLENBERGER, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 27(1), 85-96
-
(2001)
Survey Methodology
, vol.27
, Issue.1
, pp. 85-96
-
-
Raghunathan, T.E.1
Lepkowski, J.M.2
Van Hoewyk, J.3
Solenberger, P.4
-
18
-
-
84863414529
-
Multiple imputation with diagnostics (mi) in r: Opening windows into the black box
-
SU, Y. S., GELMAN, A., HILL, J. AND YAJIMA, M. (2011). Multiple imputation with diagnostics (mi) in r: opening windows into the black box. Journal of Statistical Software 45(2), 1-31
-
(2011)
Journal of Statistical Software
, vol.45
, Issue.2
, pp. 1-31
-
-
Su, Y.S.1
Gelman, A.2
Hill, J.3
Yajima, M.4
-
21
-
-
79954455620
-
Eeboost: A general method for prediction and variable selection based on estimating equations
-
WOLFSON, J. (2011). Eeboost: a general method for prediction and variable selection based on estimating equations. Journal of the American Statistical Association 106(493), 296-305
-
(2011)
Journal of the American Statistical Association
, vol.106
, Issue.493
, pp. 296-305
-
-
Wolfson, J.1
-
22
-
-
48249126832
-
How should variable selection be performed with multiply imputed data?
-
WOOD, A. M., WHITE, I. R. AND ROYSTON, P. (2008). How should variable selection be performed with multiply imputed data? Statistics in Medicine 27(17), 3227-3246
-
(2008)
Statistics in Medicine
, vol.27
, Issue.17
, pp. 3227-3246
-
-
Wood, A.M.1
White, I.R.2
Royston, P.3
-
23
-
-
20744443786
-
Imputation and variable selection in linear regression models with missing covariates
-
YANG, X., BELIN, T. R. AND BOSCARDIN, W. J. (2005). Imputation and variable selection in linear regression models with missing covariates. Biometrics 61(2), 498-506
-
(2005)
Biometrics
, vol.61
, Issue.2
, pp. 498-506
-
-
Yang, X.1
Belin, T.R.2
Boscardin, W.J.3
-
24
-
-
84936794836
-
Multiple imputation in the presence of high-dimensional data
-
in press
-
ZHAO, Y. AND LONG, Q. (2013). Multiple imputation in the presence of high-dimensional data. Statistical Methods in Medical Research, in press
-
(2013)
Statistical Methods in Medical Research
-
-
Zhao, Y.1
Long, Q.2
|