메뉴 건너뛰기




Volumn 66, Issue 1, 2010, Pages 97-104

Variable selection in the Cox regression model with covariates missing at random

Author keywords

ALASSO; Missing data; Partial likelihood; Penalized likelihood; Proportional hazards model; SCAD; Variable selection

Indexed keywords

SAMPLING;

EID: 77949733309     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2009.01274.x     Document Type: Article
Times cited : (25)

References (26)
  • 3
    • 0035998837 scopus 로고    scopus 로고
    • Double-semiparametric method for missing covariates in Cox regression models
    • Chen, H. Y. (2002). Double-semiparametric method for missing covariates in Cox regression models. Journal of the American Statistical Association 97, 565-576.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 565-576
    • Chen, H.Y.1
  • 5
    • 68949218909 scopus 로고    scopus 로고
    • Model identifi-ability for the Cox regression model with applications to missing covariates
    • in press
    • Chen, M. H., Ibrahim, J. G., and Shao, Q. M. (2009). Model identifi-ability for the Cox regression model with applications to missing covariates. Journal of Multivariate Analysis, in press.
    • (2009) Journal of Multivariate Analysis
    • Chen, M.H.1    Ibrahim, J.G.2    Shao, Q.M.3
  • 6
    • 0016794660 scopus 로고
    • Partial likelihood
    • Cox, D. R. (1975). Partial likelihood. Biometrika 362, 269-276.
    • (1975) Biometrika , vol.362 , pp. 269-276
    • Cox, D.R.1
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 8
    • 0036117466 scopus 로고    scopus 로고
    • Variable selection for Cox's proportional hazards model and frailty model
    • Fan, J. and Li, R. (2002). Variable selection for Cox's proportional hazards model and frailty model. Annals of Statistics 30, 74-99.
    • (2002) Annals of Statistics , vol.30 , pp. 74-99
    • Fan, J.1    Li, R.2
  • 9
    • 1842715135 scopus 로고    scopus 로고
    • Likelihood-based methods for missing covariates in the Cox proportional hazards model
    • Herring, A. H. and Ibrahim, J. G. (2001). Likelihood-based methods for missing covariates in the Cox proportional hazards model. Journal of the American Statistical Association 96, 292-302.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 292-302
    • Herring, A.H.1    Ibrahim, J.G.2
  • 11
    • 0033474233 scopus 로고    scopus 로고
    • Missing covariates in generalized linear models when the missing data mechanism is nonignorable
    • Ibrahim, J. G., Lipsitz, S. R., and Chen, M. H. (1999). Missing covariates in generalized linear models when the missing data mechanism is nonignorable. Journal of the Royal Statistical Society, Series B 61, 173-190.
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 173-190
    • Ibrahim, J.G.1    Lipsitz, S.R.2    Chen, M.H.3
  • 12
  • 14
    • 14944382587 scopus 로고    scopus 로고
    • Estimation with correlated censored survival data with missing covariates
    • Lipsitz, S. R. and Ibrahim, J. G. (2000). Estimation with correlated censored survival data with missing covariates. Biostatistics 1, 315-327.
    • (2000) Biostatistics , vol.1 , pp. 315-327
    • Lipsitz, S.R.1    Ibrahim, J.G.2
  • 16
    • 0000704344 scopus 로고
    • Maximum likelihood estimation for mixed continuous and categorical data with missing values
    • Little, R. J. A. and Schluchter, M. (1985). Maximum likelihood estimation for mixed continuous and categorical data with missing values. Biometrika 72, 497-512.
    • (1985) Biometrika , vol.72 , pp. 497-512
    • Little, R.J.A.1    Schluchter, M.2
  • 17
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng, X. L., and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80, 267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 18
    • 0000921023 scopus 로고    scopus 로고
    • On using Cox proportional hazards model with missing covariates
    • Paik, M. C. and Tsai, W. (1997). On using Cox proportional hazards model with missing covariates. Biometrika 84, 579-593.
    • (1997) Biometrika , vol.84 , pp. 579-593
    • Paik, M.C.1    Tsai, W.2
  • 19
  • 20
    • 0001926617 scopus 로고
    • Log-linear analysis of censored survival data with partially observed covariates
    • Schluchter, M. and Jackson, K. (1989). Log-linear analysis of censored survival data with partially observed covariates. Journal of the American Statistical Association 84, 42-52.
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 42-52
    • Schluchter, M.1    Jackson, K.2
  • 22
  • 23
    • 34548536572 scopus 로고    scopus 로고
    • Tuning parameter selector for the smoothly clipped absolute deviation method
    • Wang, H., Li, R. and Tsai, C. L. (2007). Tuning parameter selector for the smoothly clipped absolute deviation method. Biometrika 94, 553-568.
    • (2007) Biometrika , vol.94 , pp. 553-568
    • Wang, H.1    Li, R.2    Tsai, C.L.3
  • 24
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive Lasso for Cox's proportional hazard model
    • Zhang, H. and Lu, W. (2007). Adaptive Lasso for Cox's proportional hazard model. Biometrika 94, 691-703.
    • (2007) Biometrika , vol.94 , pp. 691-703
    • Zhang, H.1    Lu, W.2
  • 26
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in noncancave penalized likelihood models
    • Zou, H. and Li, R. (2008). One-step sparse estimates in noncancave penalized likelihood models. Annals of Statistics 36, 1509-1533.
    • (2008) Annals of Statistics , vol.36 , pp. 1509-1533
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.