메뉴 건너뛰기




Volumn 15, Issue 18, 2015, Pages 1827-1836

A risk assessment tool for the virtual screening of metal oxide nanoparticles through enalos insiliconano platform

Author keywords

Enalos InSilicoNano platform; Nanoparticles; Quantitative nano structure activity relationship (QNAR); Risk assessment; Toxicity; Web service

Indexed keywords

METAL OXIDE NANOPARTICLE; NANOCOATING; NANOPARTICLE; TITANIUM DIOXIDE NANOPARTICLE; ULTRASMALL SUPERPARAMAGNETIC IRON OXIDE; UNCLASSIFIED DRUG; METAL; OXIDE;

EID: 84934756718     PISSN: 15680266     EISSN: 18734294     Source Type: Journal    
DOI: 10.2174/1568026615666150506144536     Document Type: Article
Times cited : (41)

References (49)
  • 2
    • 84875346892 scopus 로고    scopus 로고
    • In silico analysis of nano- materials hazard and risk
    • Cohen, Y.; Rallo, R.; Liu, R.; Liu, H. H. In silico analysis of nano- materials hazard and risk. Acc. Chem. Res., 2013, 46, 802–812.
    • (2013) Acc. Chem. Res. , vol.46 , pp. 802-812
    • Cohen, Y.1    Rallo, R.2    Liu, R.3    Liu, H.H.4
  • 4
    • 84885757504 scopus 로고    scopus 로고
    • Applying quantitative structure-activity relationship approaches to nanotoxicology: Current status and future potential
    • Winkler, D.A.; Mombelli, E.; Pietroiusti, A.; Tran, L.; Worth, A.; Fadeel, B.; McCall, M.J. Applying quantitative structure-activity relationship approaches to nanotoxicology: Current status and future potential. Toxicology, 2013, 313, 15–23.
    • (2013) Toxicology , vol.313 , pp. 15-23
    • Winkler, D.A.1    Mombelli, E.2    Pietroiusti, A.3    Tran, L.4    Worth, A.5    Fadeel, B.6    Mccall, M.J.7
  • 5
    • 84872480029 scopus 로고    scopus 로고
    • Nanoinformatics for safe-by-design engineered nanomaterials
    • Innovative Merge of Computational Approaches and Experimental Techniques; Leszczynski, J., Puzyn, T., Eds.; RSC Nanoscience and Nanotechnology: Cambridge, UK
    • Roca, C.P.; Rallo, R.; Fernández, A.; Giralt, F. Nanoinformatics for safe-by-design engineered nanomaterials. In Towards Efficient Designing of Safe Nanomaterials: Innovative Merge of Computational Approaches and Experimental Techniques; Leszczynski, J., Puzyn, T., Eds.; RSC Nanoscience and Nanotechnology: Cambridge, UK, 2012; pp 89–107.
    • (2012) Towards Efficient Designing of Safe Nanomaterials , pp. 89-107
    • Roca, C.P.1    Rallo, R.2    Fernández, A.3    Giralt, F.4
  • 7
    • 84907334885 scopus 로고    scopus 로고
    • Computational eco-toxicology: Simultaneous prediction of ecotoxic effects of nanopar-ticles under different experimental conditions
    • Kleandrova, V.V.; Luan, F.; Gonzalez-Diaz, H.; Ruso, J.M.; Melo, A.; Speck-Planche, A.; Cordeiro, M.N.D.S. Computational eco-toxicology: Simultaneous prediction of ecotoxic effects of nanopar-ticles under different experimental conditions. Environ. Int., 2014, 73, 288–294.
    • (2014) Environ. Int. , vol.73 , pp. 288-294
    • Kleandrova, V.V.1    Luan, F.2    Gonzalez-Diaz, H.3    Ruso, J.M.4    Melo, A.5    Speck-Planche, A.6    Cordeiro, M.7
  • 8
    • 84918498032 scopus 로고    scopus 로고
    • Computational tool for risk assessment of nanomaterials: Novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions
    • Kleandrova, V.V.; Luan, F.; Gonzalez-Diaz, H.; Ruso, J.M.; Speck- Planche, A.; Cordeiro, M.N.D.S. Computational tool for risk assessment of nanomaterials: Novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ. Sci. Technol., 2014, 48, 14686–14694.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 14686-14694
    • Kleandrova, V.V.1    Luan, F.2    Gonzalez-Diaz, H.3    Ruso, J.M.4    Speck- Planche, A.5    Cordeiro, M.6
  • 9
    • 84921519852 scopus 로고    scopus 로고
    • Computational modeling in nanomedicine: Prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model
    • Speck-Planche, A.; Kleandrova, V.V.; Luan, F.; Ds Cordeiro, M.N.D.S. Computational modeling in nanomedicine: prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model. Nanomedicine (Lond), 2015, 10, 193–204.
    • (2015) Nanomedicine (Lond) , vol.10 , pp. 193-204
    • Speck-Planche, A.1    Kleandrova, V.V.2    Luan, F.3    Ds Cordeiro, M.4
  • 10
    • 78651084814 scopus 로고    scopus 로고
    • In Silico Exploration for Identifying Structure–Activity Relationship of MEK Inhibition and Oral Bioavailability for Isothiazole Derivatives
    • Melagraki, G.; Afantitis, Α.; Sarimveis, H.; Koutentis, P.A.; Ig-glessi- Markopoulou, O.; Kollias, G. In Silico Exploration for Identifying Structure–Activity Relationship of MEK Inhibition and Oral Bioavailability for Isothiazole Derivatives. Chem. Biol. Drug Des., 2010, 76, 397–406.
    • (2010) Chem. Biol. Drug Des. , vol.76 , pp. 397-406
    • Melagraki, G.1    Afantitis, G.2    Sarimveis, H.3    Koutentis, P.A.4    Ig-Glessi- Markopoulou, O.5    Kollias, G.6
  • 12
    • 84882809589 scopus 로고    scopus 로고
    • Tropsha, A. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches
    • Zhang, L.; Sedykh, A.; Tripathi, A.; Zhu, H.; Afantitis, A.; Mouch-lis, V. D.; Melagraki, G.; Rusyn, I.; Tropsha, A. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches. Toxicol. Appl. Pharmacol., 2013, 272(1), 67–76.
    • (2013) Toxicol. Appl. Pharmacol. , vol.272 , Issue.1 , pp. 67-76
    • Zhang, L.1    Sedykh, A.2    Tripathi, A.3    Zhu, H.4    Afantitis, A.5    Mouch-Lis, V.D.6    Melagraki, G.7    Rusyn, I.8
  • 13
    • 70350352315 scopus 로고    scopus 로고
    • Development, Validation and Inspection of the Applicability Domain of QSPR Models for Phys-icochemical Properties of Polybrominated Diphenyl Ethers
    • Papa, E.; Kovarich, S.; Gramatica, P. Development, Validation and Inspection of the Applicability Domain of QSPR Models for Phys-icochemical Properties of Polybrominated Diphenyl Ethers. QSAR Comb. Sci., 2009, 28, 790–796.
    • (2009) Sci. , vol.28 , pp. 790-796
    • Papa, E.1    Kovarich, S.2    Gramatica, P.3
  • 14
    • 84908122780 scopus 로고    scopus 로고
    • Enalos InSilicoNano Platform: An online decision support tool for the design and virtual screening of nanoparticles
    • Melagraki, G.; Afantitis, A. Enalos InSilicoNano Platform: An online decision support tool for the design and virtual screening of nanoparticles. RSC Adv., 2014, 4, 50713–50725.
    • (2014) RSC Adv. , vol.4 , pp. 50713-50725
    • Melagraki, G.1    Afantitis, A.2
  • 15
    • 84873050306 scopus 로고    scopus 로고
    • Dependence of QSAR models on the selection of trial descriptor sets: A demonstration using nanotoxicity endpoints of decorated nanotubes
    • Shao, C.-Y.; Chen, S.-Z.; Su, B.-H.; Tseng, Y.J.; Esposito, E.X.; Hopfinger, A.J. Dependence of QSAR models on the selection of trial descriptor sets: A demonstration using nanotoxicity endpoints of decorated nanotubes. J. Chem. Inf. Model., 2013, 53, 142–158.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 142-158
    • Shao, C.-Y.1    Chen, S.-Z.2    Su, B.-H.3    Tseng, Y.J.4    Esposito, E.X.5    Hopfinger, A.J.6
  • 18
    • 79954561104 scopus 로고    scopus 로고
    • Classification NanoSAR development for cytotoxicity of metal oxide nanoparticle
    • Liu, R.; Rallo, R.; George, S.; Ji, Z.; Nair, S.; Nel, A.E.; Cohen, Y. Classification NanoSAR development for cytotoxicity of metal oxide nanoparticle. Small, 2011, 7, 1118–1126.
    • (2011) Small , vol.7 , pp. 1118-1126
    • Liu, R.1    Rallo, R.2    George, S.3    Ji, Z.4    Nair, S.5    Nel, A.E.6    Cohen, Y.7
  • 19
    • 84878702885 scopus 로고    scopus 로고
    • Development of structure-activity relationship for metal oxide nanoparticles
    • Liu, R.; Zhang, H.Y.; Ji, Z.X.; Rallo, R.; Xia, T.; Chang, C.H.; Nel, A.; Cohen, Y. Development of structure-activity relationship for metal oxide nanoparticles. Nanoscale, 2013, 5, 5644–5653.
    • (2013) Nanoscale , vol.5 , pp. 5644-5653
    • Liu, R.1    Zhang, H.Y.2    Ji, Z.X.3    Rallo, R.4    Xia, T.5    Chang, C.H.6    Nel, A.7    Cohen, Y.8
  • 21
    • 79952333743 scopus 로고    scopus 로고
    • Exploring Quantitative Nanos-tructure-Activity Relationships (QNAR) Modeling as a Tool for Predicting Biological Effects of Manufactured Nanoparti-cles
    • Fourches, D.; Pu, D.; Tropsha, A. Exploring Quantitative Nanos-tructure-Activity Relationships (QNAR) Modeling as a Tool for Predicting Biological Effects of Manufactured Nanoparti-cles. Comb. Chem. High Throughput Screening, 2011, 14, 217–225.
    • (2011) Comb. Chem. High Throughput Screening , vol.14 , pp. 217-225
    • Fourches, D.1    Pu, D.2    Tropsha, A.3
  • 26
    • 84865704741 scopus 로고    scopus 로고
    • Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli
    • Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Gini, G.; Puzyn, T.; Leszczynska, D.; Leszczynski, J. Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli. Chemosphere, 2012, 89, 1098–1102.
    • (2012) Chemosphere , vol.89 , pp. 1098-1102
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3    Gini, G.4    Puzyn, T.5    Leszczynska, D.6    Leszczynski, J.7
  • 27
    • 78349253077 scopus 로고    scopus 로고
    • Comparative Study of Predictive Computational Models for Nanoparticle-Induced Cytotoxicity
    • Sayes, C.; Ivanov, I. Comparative Study of Predictive Computational Models for Nanoparticle-Induced Cytotoxicity. Risk Analysis, 2010, 30(11), 1723–1734.
    • (2010) Risk Analysis , vol.30 , Issue.11 , pp. 1723-1734
    • Sayes, C.1    Ivanov, I.2
  • 28
    • 84886946583 scopus 로고    scopus 로고
    • Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO2 nanoparticles
    • Toropova, A.P.; Toropov, A.A. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO2 nanoparticles. Chemosphere, 2013, 93, 2650–2655.
    • (2013) Chemosphere , vol.93 , pp. 2650-2655
    • Toropova, A.P.1    Toropov, A.A.2
  • 29
    • 84878041827 scopus 로고    scopus 로고
    • Nano-SAR development for bioactivity of nanoparticles with considerations of decision boundaries
    • Liu, R.; Rallo, R.; Weissleder, R.; Tassa, C.; Shaw, S.; Cohen, Y. Nano-SAR development for bioactivity of nanoparticles with considerations of decision boundaries. Small, 2013, 9, 1842–1852.
    • (2013) Small , vol.9 , pp. 1842-1852
    • Liu, R.1    Rallo, R.2    Weissleder, R.3    Tassa, C.4    Shaw, S.5    Cohen, Y.6
  • 30
    • 84906561362 scopus 로고    scopus 로고
    • Computer-aided nano-toxicology: Assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach
    • Luan, F.; Kleandrova, V.V.; González-Díaz, H.; Ruso, J.M.; Melo, A.; Speck-Planche, A.; Cordeiro, M.N.D.S. Computer-aided nano-toxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Nanoscale, 2014, 6(18), 10623–10630.
    • (2014) Nanoscale , vol.6 , Issue.18 , pp. 10623-10630
    • Luan, F.1    Kleandrova, V.V.2    González-Díaz, H.3    Ruso, J.M.4    Melo, A.5    Speck-Planche, A.6    Cordeiro, M.7
  • 31
    • 84902524573 scopus 로고    scopus 로고
    • Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: A mechanistic QSTR approach
    • Kar, S.; Gajewicz, A.; Puzyn, T.; Roy, K.; Leszczynski, J. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: A mechanistic QSTR approach. Ecotoxicol. Environ. Saf., 2014, 107, 162–169.
    • (2014) Ecotoxicol. Environ. Saf. , vol.107 , pp. 162-169
    • Kar, S.1    Gajewicz, A.2    Puzyn, T.3    Roy, K.4    Leszczynski, J.5
  • 32
    • 84857447860 scopus 로고    scopus 로고
    • The perspectives of computational chemistry modeling
    • Tetko, I. V. The perspectives of computational chemistry modeling. J. Comput. Aided Mol. Des. 2012, 26, 135–136.
    • (2012) J. Comput. Aided Mol. Des , vol.26 , pp. 135-136
    • Tetko, I.V.1
  • 34
    • 84874761183 scopus 로고    scopus 로고
    • Enalos KNIME nodes: Exploring corrosion inhibition of steel in acidic medium
    • Melagraki, G.; Afantitis, A. Enalos KNIME nodes: Exploring corrosion inhibition of steel in acidic medium. Chemom. Intell. Lab. Syst., 2013, 123, 9–14.
    • (2013) Chemom. Intell. Lab. Syst. , vol.123 , pp. 9-14
    • Melagraki, G.1    Afantitis, A.2
  • 35
    • 85039887708 scopus 로고    scopus 로고
    • accessed Month Day, Year
    • http://www.novamechanics.com/knime.php (accessed Month Day, Year).
  • 36
    • 85015421962 scopus 로고    scopus 로고
    • 2nd Edition, The Morgan Kaufmann Series in Data Management Systems, Gray, J., Microsoft Research, Eds.; Elsevier: San Francisco, CA
    • Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, The Morgan Kaufmann Series in Data Management Systems, Gray, J., Microsoft Research, Eds.; Elsevier: San Francisco, CA 2005; 1–525.
    • (2005) Data Mining: Practical Machine Learning Tools and Techniques , pp. 1-525
    • Witten, I.H.1    Frank, E.2
  • 40
    • 79151478389 scopus 로고    scopus 로고
    • Based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen Maps and Counterpropagation Artificial Neural Networks, Eur
    • Afantitis, A.; Melagraki, G.; Koutentis, P.A.; Sarimveis, H.; Kol-lias, G. Ligand - based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen Maps and Counterpropagation Artificial Neural Networks, Eur. J. Med. Chem., 2011, 46, 497–508.
    • (2011) J. Med. Chem. , vol.46 , pp. 497-508
    • Afantitis, A.1    Melagraki, G.2    Koutentis, P.A.3    Sarimveis, H.4    Kol-Lias, G.5    Ligand, -.6
  • 41
    • 84859172580 scopus 로고    scopus 로고
    • Molecular modeling on pyrimidine-urea inhibitors of TNF-α production: An integrated approach using a combination of molecular docking, classification techniques, and 3D-QSAR CoM-SIA
    • Mouchlis, V.D.; Melagraki, G.; Mavromoustakos, T.; Kollias, G.; Afantitis, A. Molecular modeling on pyrimidine-urea inhibitors of TNF-α production: An integrated approach using a combination of molecular docking, classification techniques, and 3D-QSAR CoM-SIA. J. Chem. Inf. Model., 2012, 52, 711–723.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 711-723
    • Mouchlis, V.D.1    Melagraki, G.2    Mavromoustakos, T.3    Kollias, G.4    Afantitis, A.5
  • 42
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and exploitation
    • Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inf. 2010, 29, 476–488.
    • (2010) Mol. Inf , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 44
    • 33750321978 scopus 로고    scopus 로고
    • Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development, Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models
    • Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development, Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models. J. Chem. Inf. Model., 2006, 46, 1984–1995.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1984-1995
    • Zhang, S.1    Golbraikh, A.2    Oloff, S.3    Kohn, H.4    Tropsha, A.5
  • 45
    • 66849131413 scopus 로고    scopus 로고
    • The applications of machine learning algorithms in the modeling of estrogen-like chemicals. Comb
    • Liu, H.; Yao, X.; Gramatica, P. The applications of machine learning algorithms in the modeling of estrogen-like chemicals. Comb. Chem. High Throughput Screening, 2009, 12, 490–496.
    • (2009) Chem. High Throughput Screening , vol.12 , pp. 490-496
    • Liu, H.1    Yao, X.2    Gramatica, P.3
  • 47
    • 84934786279 scopus 로고    scopus 로고
    • accessed 12/20/2013
    • Enalos InSilicoTox Platform.http://www.insilicotox.com/ (accessed 12/20/2013).
    • Enalos Insilicotox Platform
  • 48
    • 84934786280 scopus 로고    scopus 로고
    • accessed 12/20/2013
    • Enalos InSilicoNano Platform. http://enalos.insilicotox.com/ QNAR_IronOxide_Toxicity/ (accessed 12/20/2013).
    • Enalos Insiliconano Platform
  • 49
    • 84922690087 scopus 로고    scopus 로고
    • Exploiting ChEMBL database to identify indole analogs as HCV replication inhibitors
    • Vrontaki, E.; Melagraki, G.; Mavromoustakos, T.; Afantitis, A. Exploiting ChEMBL database to identify indole analogs as HCV replication inhibitors. Methods, 2015, 71, 4–13.
    • (2015) Methods , vol.71 , pp. 4-13
    • Vrontaki, E.1    Melagraki, G.2    Mavromoustakos, T.3    Afantitis, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.