-
1
-
-
39649092973
-
Nanotechnology and cancer
-
Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med. 2008;59:251–265.
-
(2008)
Annu Rev Med
, vol.59
, pp. 251-265
-
-
Heath, J.R.1
Davis, M.E.2
-
2
-
-
84892650579
-
Cancer nanomedicine: From drug delivery to imaging
-
Chow EKH, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med. 2013;5(216):216rv4.
-
(2013)
Sci Transl Med
, vol.5
, Issue.216
-
-
Chow, E.1
Ho, D.2
-
3
-
-
79952487660
-
Inorganic nanoparticles in cancer therapy
-
Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm Res. 2011;28(2):237–259.
-
(2011)
Pharm Res
, vol.28
, Issue.2
, pp. 237-259
-
-
Bhattacharyya, S.1
Kudgus, R.A.2
Bhattacharya, R.3
Mukherjee, P.4
-
4
-
-
77957766556
-
Nanosilver as a new generation of nanoproduct in biomedical applications
-
Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010; 28(11):580–588.
-
(2010)
Trends Biotechnol
, vol.28
, Issue.11
, pp. 580-588
-
-
Chaloupka, K.1
Malam, Y.2
Seifalian, A.M.3
-
5
-
-
84880903718
-
Cytotoxic-ity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells
-
2013
-
Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. Cytotoxic-ity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. 2013;2013:535796.
-
(2013)
Biomed Res Int
-
-
Gurunathan, S.1
Han, J.W.2
Eppakayala, V.3
Jeyaraj, M.4
Kim, J.H.5
-
7
-
-
84862902820
-
TAT-modifed nanosilver for combating multidrug-resistant cancer
-
Liu JH, Zhao YX, Guo QQ, et al. TAT-modifed nanosilver for combating multidrug-resistant cancer. Biomaterials. 2012;33(26):6155–6161.
-
(2012)
Biomaterials
, vol.33
, Issue.26
, pp. 6155-6161
-
-
Liu, J.H.1
Zhao, Y.X.2
Guo, Q.Q.3
-
8
-
-
84903781961
-
Targeted delivery of silver nanoparticles and alisertib: In vitro and in vivo synergistic effect against glioblastoma
-
Locatelli E, Naddaka M, Uboldi C, et al. Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine (Lond). 2014;9(6):839–849.
-
(2014)
Nanomedicine (Lond)
, vol.9
, Issue.6
, pp. 839-849
-
-
Locatelli, E.1
Naddaka, M.2
Uboldi, C.3
-
9
-
-
84891751732
-
Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cells
-
Sharma S, Chockalingam S, Sanpui P, Chattopadhyay A, Ghosh SS. Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cells. Adv Healthc Mater. 2014;3(1):106–114.
-
(2014)
Adv Healthc Mater
, vol.3
, Issue.1
, pp. 106-114
-
-
Sharma, S.1
Chockalingam, S.2
Sanpui, P.3
Chattopadhyay, A.4
Ghosh, S.S.5
-
10
-
-
84887470942
-
Silver nanoparticles: A novel radiation sensitizer for glioma?
-
Liu PD, Huang ZH, Chen ZW, et al. Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale. 2013;5(23):11829–11836.
-
(2013)
Nanoscale
, vol.5
, Issue.23
, pp. 11829-11836
-
-
Liu, P.D.1
Huang, Z.H.2
Chen, Z.W.3
-
11
-
-
70449701422
-
Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells
-
Miura N, Shinohara Y. Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun. 2009; 390(3):733–737.
-
(2009)
Biochem Biophys Res Commun
, vol.390
, Issue.3
, pp. 733-737
-
-
Miura, N.1
Shinohara, Y.2
-
12
-
-
68049128261
-
In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells
-
Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol. 2009;43(15):6046–6051.
-
(2009)
Environ Sci Technol
, vol.43
, Issue.15
, pp. 6046-6051
-
-
Kawata, K.1
Osawa, M.2
Okabe, S.3
-
13
-
-
83455178341
-
Toxicity of silver nanoparticles-Nanoparticle or silver ion?
-
Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles-Nanoparticle or silver ion? Toxicol Lett. 2012; 208(3):286–292.
-
(2012)
Toxicol Lett
, vol.208
, Issue.3
, pp. 286-292
-
-
Beer, C.1
Foldbjerg, R.2
Hayashi, Y.3
Sutherland, D.S.4
Autrup, H.5
-
14
-
-
84896756827
-
The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells
-
Guo D, Zhao Y, Zhang Y, et al. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol. 2014;10(4):669–678.
-
(2014)
J Biomed Nanotechnol
, vol.10
, Issue.4
, pp. 669-678
-
-
Guo, D.1
Zhao, Y.2
Zhang, Y.3
-
15
-
-
84881026592
-
Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions
-
Guo D, Zhu L, Huang Z, et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013;34(32):7884–7894.
-
(2013)
Biomaterials
, vol.34
, Issue.32
, pp. 7884-7894
-
-
Guo, D.1
Zhu, L.2
Huang, Z.3
-
16
-
-
68749084509
-
Ag nanoparticles sensitize IR-induced killing of cancer cells
-
Xu R, Ma J, Sun X, et al. Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Res. 2009;19(8):1031–1034.
-
(2009)
Cell Res
, vol.19
, Issue.8
, pp. 1031-1034
-
-
Xu, R.1
Ma, J.2
Sun, X.3
-
17
-
-
80052559658
-
Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells
-
Huang P, Yang DP, Zhang C, et al. Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells. Nanoscale. 2011;3(9): 3623–3626.
-
(2011)
Nanoscale
, vol.3
, Issue.9
, pp. 3623-3626
-
-
Huang, P.1
Yang, D.P.2
Zhang, C.3
-
18
-
-
84866745430
-
Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells
-
Lu R, Yang D, Cui D, Wang Z, Guo L. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int J Nanomedicine. 2012;7:2101–2107.
-
(2012)
Int J Nanomedicine
, vol.7
, pp. 2101-2107
-
-
Lu, R.1
Yang, D.2
Cui, D.3
Wang, Z.4
Guo, L.5
-
19
-
-
84906781670
-
Etchable plasmonic nanopar-ticle probes to image and quantify cellular internalization
-
Braun GB, Friman T, Pang HB, et al. Etchable plasmonic nanopar-ticle probes to image and quantify cellular internalization. Nat Mater. 2014;13(9):904–911.
-
(2014)
Nat Mater
, vol.13
, Issue.9
, pp. 904-911
-
-
Braun, G.B.1
Friman, T.2
Pang, H.B.3
-
20
-
-
84876936451
-
Turning a frown upside down: Exploiting nanoparticle toxicity for anticancer therapy
-
Soenen SJ, Demeester J, De Smedt SC, Braeckmans K. Turning a frown upside down: Exploiting nanoparticle toxicity for anticancer therapy. Nano Today. 2013;8(2):121–125.
-
(2013)
Nano Today
, vol.8
, Issue.2
, pp. 121-125
-
-
Soenen, S.J.1
Demeester, J.2
De Smedt, S.C.3
Braeckmans, K.4
-
21
-
-
84876871170
-
Inhibition of tumor growth and metastasis by a self-therapeutic nano-particle
-
Arvizo RR, Saha S, Wang EF, Robertson JD, Bhattacharya R, Mukherjee P. Inhibition of tumor growth and metastasis by a self-therapeutic nano-particle. Proc Natl Acad Sci U S A. 2013;110(17):6700–6705.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.17
, pp. 6700-6705
-
-
Arvizo, R.R.1
Saha, S.2
Wang, E.F.3
Robertson, J.D.4
Bhattacharya, R.5
Mukherjee, P.6
-
22
-
-
45849153496
-
The apop-totic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells
-
Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apop-totic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 2008;179(3):130–139.
-
(2008)
Toxicol Lett
, vol.179
, Issue.3
, pp. 130-139
-
-
Hsin, Y.H.1
Chen, C.F.2
Huang, S.3
Shih, T.S.4
Lai, P.S.5
Chueh, P.J.6
-
23
-
-
84876020123
-
Enhanced genotoxicity of silver nanoparticles in DNA repair defcient Mammalian cells
-
Lim HK, Asharani PV, Hande MP. Enhanced genotoxicity of silver nanoparticles in DNA repair defcient Mammalian cells. Front Genet. 2012;3:104.
-
(2012)
Front Genet
, vol.3
, pp. 104
-
-
Lim, H.K.1
Asharani, P.V.2
Hande, M.P.3
-
24
-
-
47749101213
-
Tubo-capsenolide A, a novel withanolide, inhibits proliferation and induces apoptosis in MDA-MB-231 cells by thiol oxidation of heat shock proteins
-
Chen WY, Chang FR, Huang ZY, Chen JH, Wu YC, Wu CC. Tubo-capsenolide A, a novel withanolide, inhibits proliferation and induces apoptosis in MDA-MB-231 cells by thiol oxidation of heat shock proteins. J Biol Chem. 2008;283(25):17184–17193.
-
(2008)
J Biol Chem
, vol.283
, Issue.25
, pp. 17184-17193
-
-
Chen, W.Y.1
Chang, F.R.2
Huang, Z.Y.3
Chen, J.H.4
Wu, Y.C.5
Wu, C.C.6
-
25
-
-
59849084800
-
Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation
-
Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J. 2009;418:29–37.
-
(2009)
Biochem J
, vol.418
, pp. 29-37
-
-
Aykin-Burns, N.1
Ahmad, I.M.2
Zhu, Y.3
Oberley, L.W.4
Spitz, D.R.5
-
26
-
-
70349482669
-
Profling protein thiol oxidation in tumor cells using sulfenic acid-specifc antibodies
-
Seo YH, Carroll KS. Profling protein thiol oxidation in tumor cells using sulfenic acid-specifc antibodies. Proc Natl Acad Sci U S A. 2009;106(38):16163–16168.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.38
, pp. 16163-16168
-
-
Seo, Y.H.1
Carroll, K.S.2
-
27
-
-
47049103645
-
Increased susceptibility of breast cancer cells to stress mediated inhibition of protein synthesis
-
Pervin S, Tran AH, Zekavati S, Fulknto JM, Singh R, Chaudhuri G. Increased susceptibility of breast cancer cells to stress mediated inhibition of protein synthesis. Cancer Res. 2008;68(12):4862–4874.
-
(2008)
Cancer Res
, vol.68
, Issue.12
, pp. 4862-4874
-
-
Pervin, S.1
Tran, A.H.2
Zekavati, S.3
Fulknto, J.M.4
Singh, R.5
Chaudhuri, G.6
-
28
-
-
84906996719
-
How many etiological subtypes of breast cancer: Two, three, four, or more?
-
Anderson WF, Rosenberg PS, Prat A, Perou CM, Sherman ME. How many etiological subtypes of breast cancer: two, three, four, or more? J Natl Cancer Inst. 2014;106(8):dju165.
-
(2014)
J Natl Cancer Inst
, vol.106
, Issue.8
-
-
Anderson, W.F.1
Rosenberg, P.S.2
Prat, A.3
Perou, C.M.4
Sherman, M.E.5
-
29
-
-
84896721529
-
New strategies for triple-negative breast cancer – deciphering the heterogeneity
-
Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA. New strategies for triple-negative breast cancer – deciphering the heterogeneity. Clin Cancer Res. 2014;20(4):782–790.
-
(2014)
Clin Cancer Res
, vol.20
, Issue.4
, pp. 782-790
-
-
Mayer, I.A.1
Abramson, V.G.2
Lehmann, B.D.3
Pietenpol, J.A.4
-
30
-
-
84890283025
-
Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes
-
Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol. 2014;232(2):142–150.
-
(2014)
J Pathol
, vol.232
, Issue.2
, pp. 142-150
-
-
Lehmann, B.D.1
Pietenpol, J.A.2
-
31
-
-
84875723942
-
Glutathione and glutathione analogues; therapeutic potentials
-
Wu JH, Batist G. Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta. 2013;1830(5):3350–3353.
-
(2013)
Biochim Biophys Acta
, vol.1830
, Issue.5
, pp. 3350-3353
-
-
Wu, J.H.1
Batist, G.2
-
32
-
-
2342656304
-
Glutathione analogues in cancer treatment
-
Hamilton D, Batist G. Glutathione analogues in cancer treatment. Curr Oncol Rep. 2004;6(2):116–122.
-
(2004)
Curr Oncol Rep
, vol.6
, Issue.2
, pp. 116-122
-
-
Hamilton, D.1
Batist, G.2
-
33
-
-
84881626838
-
Effect of silver nanomaterials on the activity of thiol-containing antioxidants
-
Zhou YT, He WW, Lo YM, Hu XN, Wu XC, Yin JJ. Effect of silver nanomaterials on the activity of thiol-containing antioxidants. J Agric Food Chem. 2013;61(32):7855–7862.
-
(2013)
J Agric Food Chem
, vol.61
, Issue.32
, pp. 7855-7862
-
-
Zhou, Y.T.1
He, W.W.2
Lo, Y.M.3
Hu, X.N.4
Wu, X.C.5
Yin, J.J.6
-
34
-
-
27644541020
-
In vitro tox-icity of nanoparticles in BRL 3A rat liver cells
-
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro tox-icity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005; 19(7):975–983.
-
(2005)
Toxicol in Vitro
, vol.19
, Issue.7
, pp. 975-983
-
-
Hussain, S.M.1
Hess, K.L.2
Gearhart, J.M.3
Geiss, K.T.4
Schlager, J.J.5
-
35
-
-
64749093574
-
Association of reactive oxygen species levels and radioresistance in cancer stem cells
-
Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–783.
-
(2009)
Nature
, vol.458
, Issue.7239
, pp. 780-783
-
-
Diehn, M.1
Cho, R.W.2
Lobo, N.A.3
-
36
-
-
20544437870
-
Overview of tumor cell chemoresistance mechanisms
-
Gatti L, Zunino F. Overview of tumor cell chemoresistance mechanisms. Methods Mol Med. 2005;111:127–148.
-
(2005)
Methods Mol Med
, vol.111
, pp. 127-148
-
-
Gatti, L.1
Zunino, F.2
-
37
-
-
70350223685
-
Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells
-
Garbe JC, Bhattacharya S, Merchant B, et al. Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. Cancer Res. 2009;69(19):7557–7568.
-
(2009)
Cancer Res
, vol.69
, Issue.19
, pp. 7557-7568
-
-
Garbe, J.C.1
Bhattacharya, S.2
Merchant, B.3
-
38
-
-
84878901958
-
Just add water: Reproducible singly dispersed silver nanoparticle suspensions on-demand
-
MacCuspie RI, Allen AJ, Martin MN, Hackley VA. Just add water: reproducible singly dispersed silver nanoparticle suspensions on-demand. J Nanopart Res. 2013;15(7):1760.
-
(2013)
J Nanopart Res
, vol.15
, Issue.7
, pp. 1760
-
-
Maccuspie, R.I.1
Allen, A.J.2
Martin, M.N.3
Hackley, V.A.4
-
39
-
-
77953808327
-
Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions
-
Pinto VV, Ferreira MJ, Silva R, Santos HA, Silva F, Pereira CM. Long time effect on the stability of silver nanoparticles in aqueous medium: effect of the synthesis and storage conditions. Colloid Surf A. 2010;364(1–3):19–25.
-
(2010)
Colloid Surf A
, vol.364
, Issue.1-3
, pp. 19-25
-
-
Pinto, V.V.1
Ferreira, M.J.2
Silva, R.3
Santos, H.A.4
Silva, F.5
Pereira, C.M.6
-
40
-
-
84866847776
-
Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles
-
de Lima R, Seabra AB, Duran N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol. 2012;32(11):867–879.
-
(2012)
J Appl Toxicol
, vol.32
, Issue.11
, pp. 867-879
-
-
De Lima, R.1
Seabra, A.B.2
Duran, N.3
-
41
-
-
84890429780
-
Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes
-
Prat A, Karginova O, Parker JS, et al. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat. 2013;142(2):237–255.
-
(2013)
Breast Cancer Res Treat
, vol.142
, Issue.2
, pp. 237-255
-
-
Prat, A.1
Karginova, O.2
Parker, J.S.3
-
42
-
-
0030668750
-
Gradual phenotypic conversion associated with immortalization of cultured human mammary epithelial cells
-
Stampfer MR, Bodnar A, Garbe J, et al. Gradual phenotypic conversion associated with immortalization of cultured human mammary epithelial cells. Mol Biol Cell. 1997;8(12):2391–2405.
-
(1997)
Mol Biol Cell
, vol.8
, Issue.12
, pp. 2391-2405
-
-
Stampfer, M.R.1
Bodnar, A.2
Garbe, J.3
-
43
-
-
0345178412
-
Serum-free growth of human mammary epithelial cells: Rapid clonal growth in defned medium and extended serial passage with pituitary extract
-
Hammond SL, Ham RG, Stampfer MR. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defned medium and extended serial passage with pituitary extract. Proc Natl Acad Sci U S A. 1984;81(17):5435–5439.
-
(1984)
Proc Natl Acad Sci U S A
, vol.81
, Issue.17
, pp. 5435-5439
-
-
Hammond, S.L.1
Ham, R.G.2
Stampfer, M.R.3
-
44
-
-
84893738731
-
Chemical approaches to detect and analyze protein sulfenic acids
-
Furdui CM, Poole LB. Chemical approaches to detect and analyze protein sulfenic acids. Mass Spectrom Rev. 2014;33(2):126–146.
-
(2014)
Mass Spectrom Rev
, vol.33
, Issue.2
, pp. 126-146
-
-
Furdui, C.M.1
Poole, L.B.2
-
45
-
-
79961000370
-
Simple synthesis of 1, 3-cyclopentanedione derived probes for labeling sulfenic acid proteins
-
Qian J, Klomsiri C, Wright MW, et al. Simple synthesis of 1, 3-cyclopentanedione derived probes for labeling sulfenic acid proteins. Chem Commun (Camb). 2011;47(32):9203–9205.
-
(2011)
Chem Commun (Camb)
, vol.47
, Issue.32
, pp. 9203-9205
-
-
Qian, J.1
Klomsiri, C.2
Wright, M.W.3
-
46
-
-
84897097890
-
Gold nanoparticles in breast cancer treatment
-
Lee J, Chatterjee DK, Lee MH, Krishnan S. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett. 2014;347(1): 46–53.
-
(2014)
Promise and Potential Pitfalls. Cancer Lett.
, vol.347
, Issue.1
, pp. 46-53
-
-
Lee, J.1
Chatterjee, D.K.2
Lee, M.H.3
Krishnan, S.4
-
47
-
-
84871791641
-
Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation
-
Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat. 2013;137(1):81–91.
-
(2013)
Breast Cancer Res Treat
, vol.137
, Issue.1
, pp. 81-91
-
-
Chattopadhyay, N.1
Cai, Z.2
Kwon, Y.L.3
Lechtman, E.4
Pignol, J.P.5
Reilly, R.M.6
-
48
-
-
84856433451
-
Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines
-
Mukherjee SG, O’Claonadh N, Casey A, Chambers G. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol In Vitro. 2012;26(2):238–251.
-
(2012)
Toxicol in Vitro
, vol.26
, Issue.2
, pp. 238-251
-
-
Mukherjee, S.G.1
O’Claonadh, N.2
Casey, A.3
Chambers, G.4
-
49
-
-
84891950598
-
Anti-oxidative stress response genes: Bioinformatic analysis of their expression and relevance in multiple cancers
-
Rotblat B, Grunewald TG, Leprivier G, Melino G, Knight RA. Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers. Oncotarget. 2013; 4(12):2577–2590.
-
(2013)
Oncotarget
, vol.4
, Issue.12
, pp. 2577-2590
-
-
Rotblat, B.1
Grunewald, T.G.2
Leprivier, G.3
Melino, G.4
Knight, R.A.5
-
50
-
-
84896994807
-
Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics
-
Verano-Braga T, Miethling-Graff R, Wojdyla K, et al. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano. 2014;8(3):2161–2175.
-
(2014)
ACS Nano
, vol.8
, Issue.3
, pp. 2161-2175
-
-
Verano-Braga, T.1
Miethling-Graff, R.2
Wojdyla, K.3
-
51
-
-
55949113520
-
Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species
-
Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–13619.
-
(2008)
J Phys Chem B
, vol.112
, Issue.43
, pp. 13608-13619
-
-
Carlson, C.1
Hussain, S.M.2
Schrand, A.M.3
-
52
-
-
56249083197
-
DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells
-
Ahamed M, Karns M, Goodson M, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm. 2008;233(3):404–410.
-
(2008)
Toxicol Appl Pharm
, vol.233
, Issue.3
, pp. 404-410
-
-
Ahamed, M.1
Karns, M.2
Goodson, M.3
-
53
-
-
84879190862
-
Study of Charge-Dependent Transport and Toxicity of Peptide-Functionalized Silver Nanoparticles Using Zebrafish Embryos and Single Nano-particle Plasmonic Spectroscopy
-
Lee KJ, Browning LM, Nallathamby PD, Xu XH. Study of Charge-Dependent Transport and Toxicity of Peptide-Functionalized Silver Nanoparticles Using Zebrafish Embryos and Single Nano-particle Plasmonic Spectroscopy. Chem Res Toxicol. 2013;26(6): 904–917.
-
(2013)
Chem Res Toxicol
, vol.26
, Issue.6
, pp. 904-917
-
-
Lee, K.J.1
Browning, L.M.2
Nallathamby, P.D.3
Xu, X.H.4
-
54
-
-
84883554979
-
Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration
-
Newton KM, Puppala HL, Kitchens CL, Colvin VL, Klaine SJ. Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ Toxicol Chem. 2013;32(10):2356–2364.
-
(2013)
Environ Toxicol Chem
, vol.32
, Issue.10
, pp. 2356-2364
-
-
Newton, K.M.1
Puppala, H.L.2
Kitchens, C.L.3
Colvin, V.L.4
Klaine, S.J.5
-
55
-
-
84864655437
-
Negligible Particle-Specifc Antibacterial Activity of Silver Nanoparticles
-
Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible Particle-Specifc Antibacterial Activity of Silver Nanoparticles. Nano Lett. 2012;12(8):4271–4275.
-
(2012)
Nano Lett
, vol.12
, Issue.8
, pp. 4271-4275
-
-
Xiu, Z.M.1
Zhang, Q.B.2
Puppala, H.L.3
Colvin, V.L.4
Alvarez, P.J.5
-
56
-
-
84877838246
-
Trends in breast cancer incidence and mortality in the United States: Implications for prevention
-
Toriola AT, Colditz GA. Trends in breast cancer incidence and mortality in the United States: implications for prevention. Breast Cancer Res Treat. 2013;138(3):665–673.
-
(2013)
Breast Cancer Res Treat
, vol.138
, Issue.3
, pp. 665-673
-
-
Toriola, A.T.1
Colditz, G.A.2
-
57
-
-
84867123853
-
Triple-negative breast cancer: Epidemiological considerations and recommendations
-
Boyle P. Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol. 2012;23(Suppl 6):vi7–vi12.
-
(2012)
Ann Oncol
, vol.23
, pp. vivi7-vi12
-
-
Boyle, P.1
|