|
Volumn 29, Issue 9, 2013, Pages 1190-1198
|
Parametric Bayesian priors and better choice of negative examples improve protein function prediction.
|
Author keywords
[No Author keywords available]
|
Indexed keywords
PROTEIN;
PROTEOME;
ALGORITHM;
ANIMAL;
ARTICLE;
ARTIFICIAL INTELLIGENCE;
BAYES THEOREM;
GENE REGULATORY NETWORK;
GENETICS;
GENOME;
METABOLISM;
MOLECULAR GENETICS;
MOUSE;
PHYSIOLOGY;
PROTEIN ANALYSIS;
YEAST;
ALGORITHMS;
ANIMALS;
ARTIFICIAL INTELLIGENCE;
BAYES THEOREM;
GENE REGULATORY NETWORKS;
GENOME;
MICE;
MOLECULAR SEQUENCE ANNOTATION;
PROTEIN INTERACTION MAPPING;
PROTEINS;
PROTEOME;
YEASTS;
MLCS;
MLOWN;
|
EID: 84886411294
PISSN: None
EISSN: 13674811
Source Type: None
DOI: 10.1093/bioinformatics/btt110 Document Type: Article |
Times cited : (30)
|
References (0)
|