메뉴 건너뛰기




Volumn 166, Issue , 2015, Pages 475-486

Manifold discriminant regression learning for image classification

Author keywords

Discriminant; Image classification; Linear regression; Manifold regularization

Indexed keywords

LINEAR REGRESSION; LINEAR TRANSFORMATIONS; MATRIX ALGEBRA; METADATA;

EID: 84931574379     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.03.031     Document Type: Article
Times cited : (36)

References (45)
  • 4
    • 84858002076 scopus 로고    scopus 로고
    • Robust classification using l21-norm based regression model
    • Ren C., Dai D., Yan H. Robust classification using l21-norm based regression model. Pattern Recognit. 2012, 45:2708-2718.
    • (2012) Pattern Recognit. , vol.45 , pp. 2708-2718
    • Ren, C.1    Dai, D.2    Yan, H.3
  • 5
    • 84884205226 scopus 로고    scopus 로고
    • Regularized least squaresfisher linear discriminant with applications to image recognition
    • Chen X., Yang J., Mao Q., Han F. Regularized least squaresfisher linear discriminant with applications to image recognition. Neurocomputing 2013, 122:521-534.
    • (2013) Neurocomputing , vol.122 , pp. 521-534
    • Chen, X.1    Yang, J.2    Mao, Q.3    Han, F.4
  • 6
    • 6344222582 scopus 로고    scopus 로고
    • Partial least squares regression (PLS-regression)
    • Abdi H. Partial least squares regression (PLS-regression). Encycl. Res. Methods Soc. Sci. 2003, 792-795.
    • (2003) Encycl. Res. Methods Soc. Sci. , pp. 792-795
    • Abdi, H.1
  • 7
    • 21844518517 scopus 로고
    • Multivariate locally weighted least squares regression
    • Ruppert D., Wand M.P. Multivariate locally weighted least squares regression. Ann. Stat. 1994, 22(3):1346-1370.
    • (1994) Ann. Stat. , vol.22 , Issue.3 , pp. 1346-1370
    • Ruppert, D.1    Wand, M.P.2
  • 8
    • 84882931754 scopus 로고    scopus 로고
    • Nonnegative least-squares methods for the classification of high-dimensional biological data
    • Li Y.F., Ngom A. Nonnegative least-squares methods for the classification of high-dimensional biological data. IEEE Trans. Comput. Biol. Bioinforma. 2013, 10(2):447-456.
    • (2013) IEEE Trans. Comput. Biol. Bioinforma. , vol.10 , Issue.2 , pp. 447-456
    • Li, Y.F.1    Ngom, A.2
  • 9
    • 0042842443 scopus 로고    scopus 로고
    • Ho-Kashyap classifier with generalization control
    • Leski J. Ho-Kashyap classifier with generalization control. Pattern Recognit. Lett. 2003, 24(14):2281-2290.
    • (2003) Pattern Recognit. Lett. , vol.24 , Issue.14 , pp. 2281-2290
    • Leski, J.1
  • 10
    • 84875878163 scopus 로고    scopus 로고
    • Discriminative least squares regressions for multiclass classification and feature selection
    • Xiang S.M., Nie F.P., Meng G.F., Pan C.H., Zhang C.S. Discriminative least squares regressions for multiclass classification and feature selection. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23(11):1738-1754.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.11 , pp. 1738-1754
    • Xiang, S.M.1    Nie, F.P.2    Meng, G.F.3    Pan, C.H.4    Zhang, C.S.5
  • 11
    • 70350741199 scopus 로고    scopus 로고
    • One improvement to two-dimensional locality preserving projection method for use with face recognition
    • Xu Y., Feng G., Zhao Y. One improvement to two-dimensional locality preserving projection method for use with face recognition. Neurocomputing 2009, 73(1-3):245-249.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 245-249
    • Xu, Y.1    Feng, G.2    Zhao, Y.3
  • 12
    • 77951287219 scopus 로고    scopus 로고
    • Projective nonnegative graph embedding
    • Liu X., Yan S., Jin H. Projective nonnegative graph embedding. IEEE Trans. Image Process. 2010, 19(5):1126-1137.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.5 , pp. 1126-1137
    • Liu, X.1    Yan, S.2    Jin, H.3
  • 13
    • 78649492040 scopus 로고    scopus 로고
    • Laplacian bidirectional PCA for face recognition
    • Yang W., Sun C., Zhang L., Ricanek K. Laplacian bidirectional PCA for face recognition. Neurocomputing 2010, 74:487-493.
    • (2010) Neurocomputing , vol.74 , pp. 487-493
    • Yang, W.1    Sun, C.2    Zhang, L.3    Ricanek, K.4
  • 14
    • 77957020563 scopus 로고    scopus 로고
    • LPP solution schemes for use with face recognition
    • Xu Y., Zhong A., Yang J., Zhang D. LPP solution schemes for use with face recognition. Pattern Recognit. 2010, 43(12):4165-4176.
    • (2010) Pattern Recognit. , vol.43 , Issue.12 , pp. 4165-4176
    • Xu, Y.1    Zhong, A.2    Yang, J.3    Zhang, D.4
  • 15
    • 33748412877 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with graph embedding
    • Zhao H. Combining labeled and unlabeled data with graph embedding. Neurocomputing 2006, 69:2385-2389.
    • (2006) Neurocomputing , vol.69 , pp. 2385-2389
    • Zhao, H.1
  • 16
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(22):2323-2326.
    • (2000) Science , vol.290 , Issue.22 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 17
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., Silva V., Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290(22):2319-2323.
    • (2000) Science , vol.290 , Issue.22 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 20
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semisupervised feature selection via manifold regularization
    • Xu Z., King I., Lyu M.R.-T., Jin R. Discriminative semisupervised feature selection via manifold regularization. IEEE Trans. Neural Netw. 2010, 21(7):1033-1047.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.7 , pp. 1033-1047
    • Xu, Z.1    King, I.2    Lyu, M.R.-T.3    Jin, R.4
  • 23
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis
    • Candès E.J., Li X., Ma Y., Wright J. Robust principal component analysis. J. ACM 2009, 58(3):1-17.
    • (2009) J. ACM , vol.58 , Issue.3 , pp. 1-17
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 26
    • 84864138018 scopus 로고    scopus 로고
    • Inductive robust principal component analysis
    • Bao B.K., Liu G., Xu C., Yan S. Inductive robust principal component analysis. IEEE Trans. Image Process. 2012, 21(8):3794-3800.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.8 , pp. 3794-3800
    • Bao, B.K.1    Liu, G.2    Xu, C.3    Yan, S.4
  • 27
    • 79959532395 scopus 로고    scopus 로고
    • Graph Regularized Nonnegative Matrix factorization for data representation
    • Cai D., He X., Wu X., Han J., Huang T.S. Graph Regularized Nonnegative Matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(8):1548-1560.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Wu, X.3    Han, J.4    Huang, T.S.5
  • 30
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization
    • Qian Y., Jia S., Zhou J., Robles-Kelly A. Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 2011, 49(11):4282-4297.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 31
    • 80052903676 scopus 로고    scopus 로고
    • Regression reformulations of LLE and LTSA with locally linear transformation
    • Xiang S., Nie F., Pan C., Zhang C. Regression reformulations of LLE and LTSA with locally linear transformation. IEEE Trans. Syst. Man Cybern. B Cybern. 2011, 42(5):1250-1262.
    • (2011) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.42 , Issue.5 , pp. 1250-1262
    • Xiang, S.1    Nie, F.2    Pan, C.3    Zhang, C.4
  • 33
    • 77955690054 scopus 로고    scopus 로고
    • The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
    • Department of Computer Engineering, University of Illinois, Champaign, IL, USA
    • Z. Lin, M. Chen, L. Wu, Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, Department of Computer Engineering, University of Illinois, Champaign, IL, USA, Technical Report UIUC UILU-ENG-09-2214, 01, 2009.
    • (2009)
    • Lin, Z.1    Chen, M.2    Wu, L.3    Ma, Y.4
  • 35
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • Cai J., Candès E.J., Shen Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20(4):1956-1982.
    • (2010) SIAM J. Optim. , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.1    Candès, E.J.2    Shen, Z.3
  • 36
    • 84931591871 scopus 로고    scopus 로고
    • Available: . http://www.itl.nist.gov/iad/humanid/feret/feret_master.html.
  • 40
    • 84855167311 scopus 로고    scopus 로고
    • Tensor discriminant color space for face recognition
    • Wang S., Yang J., Zhang N., Zhou C.-G. Tensor discriminant color space for face recognition. IEEE Trans. Image Process. 2011, 20(9):2490-2501.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.9 , pp. 2490-2501
    • Wang, S.1    Yang, J.2    Zhang, N.3    Zhou, C.-G.4
  • 42
    • 25844469288 scopus 로고    scopus 로고
    • The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier
    • Veeman C.J., Reinders M.J.T. The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(9):1417-1429.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.9 , pp. 1417-1429
    • Veeman, C.J.1    Reinders, M.J.T.2
  • 44
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee D.D., Seung H.S. Learning the parts of objects by nonnegative matrix factorization. Nature 1999, 401:788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 45
    • 84884547638 scopus 로고    scopus 로고
    • General subspace learning with corrupted training data via graph embedding
    • Bao B.K., Liu G., Hong R., Yan S., Xu C. General subspace learning with corrupted training data via graph embedding. IEEE Trans. Image Process. 2013, 22(11):4380-4393.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.11 , pp. 4380-4393
    • Bao, B.K.1    Liu, G.2    Hong, R.3    Yan, S.4    Xu, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.