메뉴 건너뛰기




Volumn 122, Issue , 2013, Pages 521-534

Regularized least squares fisher linear discriminant with applications to image recognition

Author keywords

2 Norm loss function; Concave convex programming (CCP); Linear discriminant analysis (LDA); Regularization technique

Indexed keywords

CONCAVE-CONVEX PROGRAMMING (CCP); DIMENSION REDUCTION METHOD; FISHER LINEAR DISCRIMINANTS; GENERALIZATION PERFORMANCE; LINEAR DISCRIMINANT ANALYSIS; LOSS FUNCTIONS; REGULARIZATION TECHNIQUE; REGULARIZED LINEAR DISCRIMINANT ANALYSIS (R-LDA);

EID: 84884205226     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.05.006     Document Type: Article
Times cited : (14)

References (40)
  • 3
    • 79960144400 scopus 로고    scopus 로고
    • Local linear discriminant analysis framework using sample neighbors
    • Fan Z., Xu Y., Zhang D. Local linear discriminant analysis framework using sample neighbors. IEEE Trans. Neural Networks 2011, 22:1119-1132.
    • (2011) IEEE Trans. Neural Networks , vol.22 , pp. 1119-1132
    • Fan, Z.1    Xu, Y.2    Zhang, D.3
  • 4
    • 0026384289 scopus 로고
    • Face recognition using eigenfaces
    • Proc. CVPR91
    • M.A. Turk, A.P. Pentland, Face recognition using eigenfaces, in: Proc. CVPR91, 1991, 586-591.
    • (1991) , pp. 586-591
    • Turk, M.A.1    Pentland, A.P.2
  • 5
    • 84955476006 scopus 로고    scopus 로고
    • Eigenfaces vs. fisherfaces: recognition using class specific linear projection
    • Proc. ECCV96
    • P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. fisherfaces: recognition using class specific linear projection, in: Proc. ECCV96, 1996 43-58.
    • (1996) , pp. 43-58
    • Belhumeur, P.1    Hespanha, J.2    Kriegman, D.3
  • 6
    • 77957020563 scopus 로고    scopus 로고
    • LPP solution schemes for use with face recognition
    • Xu Y., Zhong A., Yang J., Zhang D. LPP solution schemes for use with face recognition. Pattern Recognit. 2010, 43:4165-4176.
    • (2010) Pattern Recognit. , vol.43 , pp. 4165-4176
    • Xu, Y.1    Zhong, A.2    Yang, J.3    Zhang, D.4
  • 8
    • 10044254164 scopus 로고    scopus 로고
    • Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition
    • Lu J., Plataniotis K.N., Venetsanopoulos A.N. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition. Pattern Recognit. Lett. 2005, 26:181-191.
    • (2005) Pattern Recognit. Lett. , vol.26 , pp. 181-191
    • Lu, J.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 10
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman J.H. Regularized discriminant analysis. J. Am. Stat. Assoc. 1989, 165-175.
    • (1989) J. Am. Stat. Assoc. , pp. 165-175
    • Friedman, J.H.1
  • 11
    • 0036487285 scopus 로고    scopus 로고
    • Why can LDA be performed in PCA transformed space?
    • Yang J. Why can LDA be performed in PCA transformed space?. Pattern Recognit. 2003, 36:563-566.
    • (2003) Pattern Recognit. , vol.36 , pp. 563-566
    • Yang, J.1
  • 14
    • 78149477697 scopus 로고    scopus 로고
    • Dimensionality reduction by minimal distance maximization
    • Proc. ICPR10
    • B. Xu, K. Huang, C.L. Liu, Dimensionality reduction by minimal distance maximization, in: Proc. ICPR10, 2010, 569-572.
    • (2010) , pp. 569-572
    • Xu, B.1    Huang, K.2    Liu, C.L.3
  • 15
    • 79953054794 scopus 로고    scopus 로고
    • Max-min distance analysis by using sequential SDP relaxation for dimension reduction
    • Bian W., Tao D. Max-min distance analysis by using sequential SDP relaxation for dimension reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 1037-1050.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , pp. 1037-1050
    • Bian, W.1    Tao, D.2
  • 16
    • 80052759348 scopus 로고    scopus 로고
    • Recursive Concave-Convex Fisher Linear Discriminant with Applications to Face, Handwritten Digit and Terrain Recognition Pattern Recognition
    • Q. Ye, C. Zhao, H. Zhang, X. Chen, Recursive Concave-Convex Fisher Linear Discriminant with Applications to Face, Handwritten Digit and Terrain Recognition Pattern Recognition, 45, 2012, 54-65.
    • (2012) , vol.45 , pp. 54-65
    • Ye, Q.1    Zhao, C.2    Zhang, H.3    Chen, X.4
  • 18
    • 79958810411 scopus 로고    scopus 로고
    • Recursive projection twin support vector machine via within-class variance minimization
    • Chen X., Yang J., Ye Q., Liang J. Recursive projection twin support vector machine via within-class variance minimization. Pattern Recognit. 2011, 44:2643-2655.
    • (2011) Pattern Recognit. , vol.44 , pp. 2643-2655
    • Chen, X.1    Yang, J.2    Ye, Q.3    Liang, J.4
  • 20
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9:293-300.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 21
    • 84865318461 scopus 로고    scopus 로고
    • Recursive robust least squares support vector regression based on maximum correntropy criterion
    • Chen X., Yang J., Liang J., Ye Q. Recursive robust least squares support vector regression based on maximum correntropy criterion. Neurocomputing 2012, 97:63-73.
    • (2012) Neurocomputing , vol.97 , pp. 63-73
    • Chen, X.1    Yang, J.2    Liang, J.3    Ye, Q.4
  • 22
    • 79956100012 scopus 로고    scopus 로고
    • Optimal locality regularized least squares support vector machine via alternating optimization
    • Chen X., Yang J., Liang J. Optimal locality regularized least squares support vector machine via alternating optimization. Neural Process. Lett. 2011, 33:301-315.
    • (2011) Neural Process. Lett. , vol.33 , pp. 301-315
    • Chen, X.1    Yang, J.2    Liang, J.3
  • 23
    • 84857059738 scopus 로고    scopus 로고
    • Least squares recursive projection twin support vector machine for classification
    • Shao Y.H., Deng N.Y., Yang Z.M. Least squares recursive projection twin support vector machine for classification. Pattern Recognit. 2012, 45:2299-2307.
    • (2012) Pattern Recognit. , vol.45 , pp. 2299-2307
    • Shao, Y.H.1    Deng, N.Y.2    Yang, Z.M.3
  • 24
  • 26
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 28
    • 52649138409 scopus 로고    scopus 로고
    • Efficient maximum margin clustering via cutting plane algorithm
    • Proc. SIAM
    • B. Zhao, F. Wang, C. Zhang, Efficient maximum margin clustering via cutting plane algorithm, in:. Proc. SIAM, 2008, 751-762.
    • (2008) , pp. 751-762
    • Zhao, B.1    Wang, F.2    Zhang, C.3
  • 29
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J. Mach. Learn. Res. 2007, 8:1027-1061.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 32
    • 84884210737 scopus 로고    scopus 로고
    • Handwritten digit database (Online Available).
    • Handwritten digit database (Online Available). http://www.cs.nyu.edu/~roweis/data.html.
  • 33
    • 4544292940 scopus 로고    scopus 로고
    • The CMU pose, illumination, and expression (PIE) database
    • Proc. AFGR
    • T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database, in: Proc. AFGR, 2002, 46-51.
    • (2002) , pp. 46-51
    • Sim, T.1    Baker, S.2    Bsat, M.3
  • 34
    • 0004171986 scopus 로고    scopus 로고
    • The AR face database, Computer Vision Center, Universitat Autónoma de Barcelona, CVC Technical Report
    • A. Martinez, R. Benavente, The AR face database, Computer Vision Center, Universitat Autónoma de Barcelona, CVC Technical Report, 24, 1998.
    • (1998) , vol.24
    • Martinez, A.1    Benavente, R.2
  • 36
    • 69049112203 scopus 로고    scopus 로고
    • Sparsity preserving projections with applications to face recognition
    • Qiao L., Chen S., Tan X. Sparsity preserving projections with applications to face recognition. Pattern Recognit. 2010, 43:331-341.
    • (2010) Pattern Recognit. , vol.43 , pp. 331-341
    • Qiao, L.1    Chen, S.2    Tan, X.3
  • 37
    • 70049092408 scopus 로고    scopus 로고
    • Structured variable selection with sparsity-inducing norms
    • Jenatton R., Audibert J.Y., Bach F. Structured variable selection with sparsity-inducing norms. Arxiv preprint arXiv 2009, 0904:3523.
    • (2009) Arxiv preprint arXiv , vol.904 , pp. 3523
    • Jenatton, R.1    Audibert, J.Y.2    Bach, F.3
  • 38
    • 78650245184 scopus 로고    scopus 로고
    • Sparse two-dimensional local discriminant projections for feature extraction
    • Lai Z., Wan M., Jin Z., Yang J. Sparse two-dimensional local discriminant projections for feature extraction. Neurocomputing 2011, 74:629-637.
    • (2011) Neurocomputing , vol.74 , pp. 629-637
    • Lai, Z.1    Wan, M.2    Jin, Z.3    Yang, J.4
  • 39
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: illumination cone models for face recognition under variable lighting and pose
    • Georghiades A.S., Belhumeur P.N., Kriegman D.J. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23(6):643-660.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.S.1    Belhumeur, P.N.2    Kriegman, D.J.3
  • 40
    • 37549013404 scopus 로고    scopus 로고
    • MultiK-MHKS: a novel multiple kernel learning algorithm
    • Wang Zhe, Chen Songcan, Sun Tingkai MultiK-MHKS: a novel multiple kernel learning algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30:348-353.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , pp. 348-353
    • Wang, Z.1    Chen, S.2    Sun, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.