메뉴 건너뛰기




Volumn 166, Issue , 2015, Pages 185-192

A novel hybrid approach utilizing principal component regression and random forest regression to bridge the period of GPS outages

Author keywords

Global Positioning System; Inertial Navigation System; Principal Component Regression; Random Forest Regression

Indexed keywords

AIR NAVIGATION; DECISION TREES; GLOBAL POSITIONING SYSTEM; KALMAN FILTERS; NAVIGATION; RANDOM FORESTS; SENSOR DATA FUSION;

EID: 84931560585     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.03.080     Document Type: Article
Times cited : (45)

References (36)
  • 4
    • 0024034945 scopus 로고
    • High-accuracy kinematic positioning by GPS-INS
    • Wong R.V.C., Schwarz K.P., Cannon M.E. High-accuracy kinematic positioning by GPS-INS. Navigation 1988, 35(2):275-288.
    • (1988) Navigation , vol.35 , Issue.2 , pp. 275-288
    • Wong, R.V.C.1    Schwarz, K.P.2    Cannon, M.E.3
  • 6
    • 0020718346 scopus 로고
    • Nonlinear Kalman filtering techniques for terrain-aided navigation
    • Hostetler L., Andreas R. Nonlinear Kalman filtering techniques for terrain-aided navigation. Autom. Control IEEE Trans. 1983, 28(3):315-323.
    • (1983) Autom. Control IEEE Trans. , vol.28 , Issue.3 , pp. 315-323
    • Hostetler, L.1    Andreas, R.2
  • 8
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial of particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalan S., Maksell S., Gordon N., Clapp T. A tutorial of particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50(2):174-188.
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.2 , pp. 174-188
    • Arulampalan, S.1    Maksell, S.2    Gordon, N.3    Clapp, T.4
  • 10
    • 0031347068 scopus 로고    scopus 로고
    • New extension of the Kalman filter to nonlinear systems
    • S.J. Julier, and J.K. Uhlmann, New extension of the Kalman filter to nonlinear systems, in: Proceedings of the SPIE, 1997, pp. 182-193.
    • (1997) Proceedings of the SPIE , pp. 182-193
    • Julier, S.J.1    Uhlmann, J.K.2
  • 11
    • 33749317013 scopus 로고    scopus 로고
    • The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments
    • El-Sheimy N., Chiang K.W., Noureldin A. The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments. IEEE Trans. Instrum. Meas. 2006, 55(5):1606-1615.
    • (2006) IEEE Trans. Instrum. Meas. , vol.55 , Issue.5 , pp. 1606-1615
    • El-Sheimy, N.1    Chiang, K.W.2    Noureldin, A.3
  • 12
    • 33749003201 scopus 로고    scopus 로고
    • Bridging GPS outages using neural network estimates of INS position and velocity errors
    • Semeniuk L., Noureldin A. Bridging GPS outages using neural network estimates of INS position and velocity errors. Meas. Sci. Technol. 2006, 17(9):2783-2798.
    • (2006) Meas. Sci. Technol. , vol.17 , Issue.9 , pp. 2783-2798
    • Semeniuk, L.1    Noureldin, A.2
  • 15
    • 84876283701 scopus 로고    scopus 로고
    • Knowledge based neural network approaches for modeling and estimating radon concentrations
    • Akkala A., Bhatt D., Devabhakthuni V., Kumar A. Knowledge based neural network approaches for modeling and estimating radon concentrations. Environ. Prog. Sustain. Energy 2013, 32(2):355-364.
    • (2013) Environ. Prog. Sustain. Energy , vol.32 , Issue.2 , pp. 355-364
    • Akkala, A.1    Bhatt, D.2    Devabhakthuni, V.3    Kumar, A.4
  • 16
    • 0030393612 scopus 로고    scopus 로고
    • EM-ANN models for microstrip vias and interconnects in multilayer circuits
    • Watson P.M., Gupta K.C. EM-ANN models for microstrip vias and interconnects in multilayer circuits. IEEE Trans. Microw. Theory Technol. 1996, 44:2495-2503.
    • (1996) IEEE Trans. Microw. Theory Technol. , vol.44 , pp. 2495-2503
    • Watson, P.M.1    Gupta, K.C.2
  • 18
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 19
  • 21
    • 0001247934 scopus 로고
    • A note on the use of principal components in regression
    • Jolliffe I.T. A note on the use of principal components in regression. Appl. Stat. 1982, 31(3):300-303.
    • (1982) Appl. Stat. , vol.31 , Issue.3 , pp. 300-303
    • Jolliffe, I.T.1
  • 22
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Mach. Learn. 1986, 1(1):81-106.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 23
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 25
    • 13244289883 scopus 로고    scopus 로고
    • Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
    • Jiang H., Deng Y., Chen H.S., Tao L., Sha Q., Chen J., Tsai C.J., Zhang S. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinform. 2004, 5(1):81.
    • (2004) BMC Bioinform. , vol.5 , Issue.1 , pp. 81
    • Jiang, H.1    Deng, Y.2    Chen, H.S.3    Tao, L.4    Sha, Q.5    Chen, J.6    Tsai, C.J.7    Zhang, S.8
  • 27
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad A.M., Iverson L.R., Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 2006, 9(2):181-199.
    • (2006) Ecosystems , vol.9 , Issue.2 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 28
    • 8844227567 scopus 로고    scopus 로고
    • Use of principal component scores in multiple linear regression models for prediction of chlorophyll-a in reservoirs
    • Çamdevýren H., Demýr N., Kanik A., Keskýn S. Use of principal component scores in multiple linear regression models for prediction of chlorophyll-a in reservoirs. Ecol. Model. 2005, 181(4):581-589.
    • (2005) Ecol. Model. , vol.181 , Issue.4 , pp. 581-589
    • Çamdevýren, H.1    Demýr, N.2    Kanik, A.3    Keskýn, S.4
  • 29
    • 0002313891 scopus 로고
    • Multicollinearity in regression analysis: the problem revisited
    • Farrar D.E., Glauber R.R. Multicollinearity in regression analysis: the problem revisited. Rev. Econ. Stat. 1967, 49(1):92-107.
    • (1967) Rev. Econ. Stat. , vol.49 , Issue.1 , pp. 92-107
    • Farrar, D.E.1    Glauber, R.R.2
  • 31
    • 84900870670 scopus 로고    scopus 로고
    • Improving multiple linear regression model using principal component analysis for predicting PM10 concentration in Seberang Prai, Pulau Pinang
    • Ul-Saufie A.Z., Yahya A.S., Ramli N.A. Improving multiple linear regression model using principal component analysis for predicting PM10 concentration in Seberang Prai, Pulau Pinang. Int. J. Environ. Sci. 2011, 2(2):403-409.
    • (2011) Int. J. Environ. Sci. , vol.2 , Issue.2 , pp. 403-409
    • Ul-Saufie, A.Z.1    Yahya, A.S.2    Ramli, N.A.3
  • 32
    • 36148953966 scopus 로고    scopus 로고
    • Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone
    • Al-Alawi S.M., Abdul-Wahab S.A., Bakheit C.S. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Model. Softw. 2008, 23(4):396-403.
    • (2008) Environ. Model. Softw. , vol.23 , Issue.4 , pp. 396-403
    • Al-Alawi, S.M.1    Abdul-Wahab, S.A.2    Bakheit, C.S.3
  • 33
    • 33749247555 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
    • Sousa S.I.V., Martins F.G., Alvim-Ferraz M.C.M., Pereira M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Model. Softw. 2007, 22(1):97-103.
    • (2007) Environ. Model. Softw. , vol.22 , Issue.1 , pp. 97-103
    • Sousa, S.I.V.1    Martins, F.G.2    Alvim-Ferraz, M.C.M.3    Pereira, M.C.4
  • 34
    • 79251574365 scopus 로고    scopus 로고
    • Combining principal component regression and artificial neural network to predict chlorophyll-a concentration of Yuqiao Reservoir's outflow
    • Zhang X., Wang Q., Yu M., Wu J. Combining principal component regression and artificial neural network to predict chlorophyll-a concentration of Yuqiao Reservoir's outflow. Trans. Tianjin Univ. 2010, 16(6):467.
    • (2010) Trans. Tianjin Univ. , vol.16 , Issue.6 , pp. 467
    • Zhang, X.1    Wang, Q.2    Yu, M.3    Wu, J.4
  • 35
    • 84861384961 scopus 로고    scopus 로고
    • GPS/INS integration for land vehicle navigation using source difference method
    • Portland, OR, September 2011
    • D. Bhatt, P. Aggarwal, P. Bhattacharya, V. Devabhaktuni, GPS/INS integration for land vehicle navigation using source difference method, in: Proceedings of the ION GNSS, Portland, OR, September 2011, 2011, pp. 1811-1817.
    • (2011) Proceedings of the ION GNSS , pp. 1811-1817
    • Bhatt, D.1    Aggarwal, P.2    Bhattacharya, P.3    Devabhaktuni, V.4
  • 36
    • 84931566553 scopus 로고    scopus 로고
    • Low-cost INS and GPS data fusion: Comparing Cubist, Random Forests, and Support Vector Regression
    • in preparation to Information Fusion.
    • D. Bhatt, V. Devabhaktuni, P. Aggarwal, and P. Bhattacharya, Low-cost INS and GPS data fusion: Comparing Cubist, Random Forests, and Support Vector Regression, in preparation to Information Fusion.
    • Bhatt, D.1    Devabhaktuni, V.2    Aggarwal, P.3    Bhattacharya, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.