메뉴 건너뛰기




Volumn 89, Issue 14, 2015, Pages 7053-7063

The human adenovirus type 5 L4 promoter is negatively regulated by TFII-I and L4-33K

Author keywords

[No Author keywords available]

Indexed keywords

E4 ORF3 PROTEIN; L4 22K PROTEIN; L4 33K PROTEIN; TRANSCRIPTION FACTOR II; TRANSCRIPTION FACTOR TFII I; UNCLASSIFIED DRUG; VIRUS PROTEIN; GTF2I PROTEIN, HUMAN;

EID: 84931096209     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.00683-15     Document Type: Article
Times cited : (8)

References (52)
  • 1
    • 84931044576 scopus 로고    scopus 로고
    • Adenoviruses: molecular biology
    • 17 October, Caplan MJ (ed), Elsevier, New York, NY
    • Leppard KN. 17 October 2014. Adenoviruses: molecular biology. In Caplan MJ (ed), Reference module in biomedical sciences. Elsevier, New York, NY. http://dx.doi.org/10.1016/B978-0-12-801238-3.02525-3.
    • (2014) Reference module in biomedical sciences
    • Leppard, K.N.1
  • 2
    • 0019415027 scopus 로고
    • Regulation of adenovirus-2 gene expression at the level of transcriptional termination and RNA processing
    • Nevins JR, Wilson MC. 1981. Regulation of adenovirus-2 gene expression at the level of transcriptional termination and RNA processing. Nature 290:113-118. http://dx.doi.org/10.1038/290113a0.
    • (1981) Nature , vol.290 , pp. 113-118
    • Nevins, J.R.1    Wilson, M.C.2
  • 3
    • 0019796919 scopus 로고
    • Controls of RNA splicing and termination in the major late adenovirus transcription unit
    • Akusjarvi G, Persson H. 1981. Controls of RNA splicing and termination in the major late adenovirus transcription unit. Nature 292:420-426. http://dx.doi.org/10.1038/292420a0.
    • (1981) Nature , vol.292 , pp. 420-426
    • Akusjarvi, G.1    Persson, H.2
  • 4
    • 42649108435 scopus 로고    scopus 로고
    • Temporal regulation of adenovirus major late alternative RNA splicing
    • Akusjarvi G. 2008. Temporal regulation of adenovirus major late alternative RNA splicing. Front Biosci 13:5006-5015. http://dx.doi.org/10.2741/3059.
    • (2008) Front Biosci , vol.13 , pp. 5006-5015
    • Akusjarvi, G.1
  • 5
    • 0026770953 scopus 로고
    • Control of adenovirus major late gene-expression at multiple levels
    • Larsson S, Svensson C, Akusjarvi G. 1992. Control of adenovirus major late gene-expression at multiple levels. J Mol Biol 225:287-298. http://dx.doi.org/10.1016/0022-2836(92)90922-7.
    • (1992) J Mol Biol , vol.225 , pp. 287-298
    • Larsson, S.1    Svensson, C.2    Akusjarvi, G.3
  • 6
    • 0019215656 scopus 로고
    • Transcripts from the adenovirus-2 major late promoter yield a single early family of 3' coterminalmRNAsand five late families
    • Shaw AR, Ziff EB. 1980. Transcripts from the adenovirus-2 major late promoter yield a single early family of 3' coterminalmRNAsand five late families. Cell 22:905-916. http://dx.doi.org/10.1016/0092-8674(80)90568-1.
    • (1980) Cell , vol.22 , pp. 905-916
    • Shaw, A.R.1    Ziff, E.B.2
  • 7
    • 63149098787 scopus 로고    scopus 로고
    • Adenovirus serotype 5 L4-22K and L4-33K proteins have distinct functions in regulating late gene expression
    • Morris SJ, Leppard KN. 2009. Adenovirus serotype 5 L4-22K and L4-33K proteins have distinct functions in regulating late gene expression. J Virol 83:3049-3058. http://dx.doi.org/10.1128/JVI.02455-08.
    • (2009) J Virol , vol.83 , pp. 3049-3058
    • Morris, S.J.1    Leppard, K.N.2
  • 8
    • 0842304525 scopus 로고    scopus 로고
    • Activation of the early-late switch in adenovirus type 5 major late transcription unit expression by L4 gene products
    • Farley DC, Brown JL, Leppard KN. 2004. Activation of the early-late switch in adenovirus type 5 major late transcription unit expression by L4 gene products. J Virol 78:1782-1791. http://dx.doi.org/10.1128/JVI.78.4.1782-1791.2004.
    • (2004) J Virol , vol.78 , pp. 1782-1791
    • Farley, D.C.1    Brown, J.L.2    Leppard, K.N.3
  • 9
    • 0020674671 scopus 로고
    • Polypeptide structure and encoding location of the adenovirus serotype-2 late, non-structural 33Kprotein
    • Oosterom-Dragon EA, Anderson CW. 1983. Polypeptide structure and encoding location of the adenovirus serotype-2 late, non-structural 33Kprotein. J Virol 45:251-263.
    • (1983) J Virol , vol.45 , pp. 251-263
    • Oosterom-Dragon, E.A.1    Anderson, C.W.2
  • 10
    • 33745780727 scopus 로고    scopus 로고
    • The L4 22-kilodalton protein plays a role in packaging of the adenovirus genome
    • Ostapchuk P, Anderson ME, Chandrasekhar S, Hearing P. 2006. The L4 22-kilodalton protein plays a role in packaging of the adenovirus genome. J Virol 80:6973-6981. http://dx.doi.org/10.1128/JVI.00123-06.
    • (2006) J Virol , vol.80 , pp. 6973-6981
    • Ostapchuk, P.1    Anderson, M.E.2    Chandrasekhar, S.3    Hearing, P.4
  • 11
    • 84869001469 scopus 로고    scopus 로고
    • The adenovirus L4-22K protein is multifunctional and is an integral component of crucial aspects of infection
    • Wu K, Orozco D, Hearing P. 2012. The adenovirus L4-22K protein is multifunctional and is an integral component of crucial aspects of infection. J Virol 86:10474-10483. http://dx.doi.org/10.1128/JVI.01463-12.
    • (2012) J Virol , vol.86 , pp. 10474-10483
    • Wu, K.1    Orozco, D.2    Hearing, P.3
  • 12
    • 77954212876 scopus 로고    scopus 로고
    • Adenovirus L4-22K stimulates major late transcription by a mechanism requiring the intragenic late-specific transcription factor-binding site
    • Backstrom E, Kaufmann KB, Lan X, Akusjarvi G. 2010. Adenovirus L4-22K stimulates major late transcription by a mechanism requiring the intragenic late-specific transcription factor-binding site. Virus Res 151: 220-228. http://dx.doi.org/10.1016/j.virusres.2010.05.013.
    • (2010) Virus Res , vol.151 , pp. 220-228
    • Backstrom, E.1    Kaufmann, K.B.2    Lan, X.3    Akusjarvi, G.4
  • 13
    • 33845972273 scopus 로고    scopus 로고
    • L4-33K, an adenovirus-encoded alternative RNA splicing factor
    • Törmänen H, Backstrom E, Carlsson A, Akusjarvi G. 2006. L4-33K, an adenovirus-encoded alternative RNA splicing factor. J Biol Chem 281: 36510-36517. http://dx.doi.org/10.1074/jbc.M607601200.
    • (2006) J Biol Chem , vol.281 , pp. 36510-36517
    • Törmänen, H.1    Backstrom, E.2    Carlsson, A.3    Akusjarvi, G.4
  • 14
    • 84878535432 scopus 로고    scopus 로고
    • The adenovirus L4-33K protein regulates both late gene expression patterns and viral DNA packaging
    • Wu K, Guimet D, Hearing P. 2013. The adenovirus L4-33K protein regulates both late gene expression patterns and viral DNA packaging. J Virol 87:6739-6747. http://dx.doi.org/10.1128/JVI.00652-13.
    • (2013) J Virol , vol.87 , pp. 6739-6747
    • Wu, K.1    Guimet, D.2    Hearing, P.3
  • 15
    • 84880368657 scopus 로고    scopus 로고
    • The adenovirus L4-22K protein has distinct functions in the posttranscriptional regulation of gene expression and encapsidation of the viral genome
    • Guimet D, Hearing P. 2013. The adenovirus L4-22K protein has distinct functions in the posttranscriptional regulation of gene expression and encapsidation of the viral genome. J Virol 87:7688-7699. http://dx.doi.org/10.1128/JVI.00859-13.
    • (2013) J Virol , vol.87 , pp. 7688-7699
    • Guimet, D.1    Hearing, P.2
  • 16
    • 77953779668 scopus 로고    scopus 로고
    • Adenovirus late phase infection is controlled by a novel L4 promoter
    • Morris SJ, Scott GE, Leppard KN. 2010. Adenovirus late phase infection is controlled by a novel L4 promoter. J Virol 84:7096-7104. http://dx.doi.org/10.1128/JVI.00107-10.
    • (2010) J Virol , vol.84 , pp. 7096-7104
    • Morris, S.J.1    Scott, G.E.2    Leppard, K.N.3
  • 17
    • 84886888907 scopus 로고    scopus 로고
    • The human adenovirus 5 L4 promoter is activated by cellular stress response protein p53
    • Wright J, Leppard KN. 2013. The human adenovirus 5 L4 promoter is activated by cellular stress response protein p53. J Virol 87:11617-11625. http://dx.doi.org/10.1128/JVI.01924-13.
    • (2013) J Virol , vol.87 , pp. 11617-11625
    • Wright, J.1    Leppard, K.N.2
  • 18
    • 0025996912 scopus 로고
    • Cooperative interaction of an initiator-binding transcription initiation-factor and the helix loop helix activator USF
    • Roy AL, Meisterernst M, Pognonec P, Roeder RG. 1991. Cooperative interaction of an initiator-binding transcription initiation-factor and the helix loop helix activator USF. Nature 354:245-248. http://dx.doi.org/10.1038/354245a0.
    • (1991) Nature , vol.354 , pp. 245-248
    • Roy, A.L.1    Meisterernst, M.2    Pognonec, P.3    Roeder, R.G.4
  • 19
    • 12044258637 scopus 로고
    • An alternative pathway for transcription initiation involving TFII-I
    • Roy AL, Malik S, Meisterernst M, Roeder RG. 1993. An alternative pathway for transcription initiation involving TFII-I. Nature 365:355-359. http://dx.doi.org/10.1038/365355a0.
    • (1993) Nature , vol.365 , pp. 355-359
    • Roy, A.L.1    Malik, S.2    Meisterernst, M.3    Roeder, R.G.4
  • 20
    • 84874085987 scopus 로고    scopus 로고
    • Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues
    • Makeyev AV, Enkhmandakh B, Hong S-H, Joshi P, Shin D-G, Bayarsaihan D. 2012. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues. PLoS One 7:e44443. http://dx.doi.org/10.1371/journal.pone.0044443.
    • (2012) PLoS One , vol.7
    • Makeyev, A.V.1    Enkhmandakh, B.2    Hong, S.-H.3    Joshi, P.4    Shin, D.-G.5    Bayarsaihan, D.6
  • 21
    • 84155186464 scopus 로고    scopus 로고
    • Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later
    • Roy AL. 2012. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 492:32-41. http://dx.doi.org/10.1016/j.gene.2011.10.030.
    • (2012) Gene , vol.492 , pp. 32-41
    • Roy, A.L.1
  • 23
    • 20444433944 scopus 로고    scopus 로고
    • Transcriptional regulation of the Grp78 promoter by endoplasmic reticulum stress: role of TFII-I and its tyrosine phosphorylation
    • Hong M, Lin MY, Huang JM, Baumeister P, Hakre S, Roy AL, Lee AS. 2005. Transcriptional regulation of the Grp78 promoter by endoplasmic reticulum stress: role of TFII-I and its tyrosine phosphorylation. J Biol Chem 280:16821-16828. http://dx.doi.org/10.1074/jbc.M413753200.
    • (2005) J Biol Chem , vol.280 , pp. 16821-16828
    • Hong, M.1    Lin, M.Y.2    Huang, J.M.3    Baumeister, P.4    Hakre, S.5    Roy, A.L.6    Lee, A.S.7
  • 24
    • 0035047708 scopus 로고    scopus 로고
    • Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6
    • Parker R, Phan T, Baumeister P, Roy B, Cheriyath V, Roy AL, Lee AS. 2001. Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Mol Cell Biol 21:3220-3233. http://dx.doi.org/10.1128/MCB.21.9.3220-3233.2001.
    • (2001) Mol Cell Biol , vol.21 , pp. 3220-3233
    • Parker, R.1    Phan, T.2    Baumeister, P.3    Roy, B.4    Cheriyath, V.5    Roy, A.L.6    Lee, A.S.7
  • 25
    • 0027425699 scopus 로고
    • Direct role for myc in transcription initiation mediated by interactions with TFII-I
    • Roy AL, Carruthers C, Gutjahr T, Roeder RG. 1993. Direct role for myc in transcription initiation mediated by interactions with TFII-I. Nature 365:359-361. http://dx.doi.org/10.1038/365359a0.
    • (1993) Nature , vol.365 , pp. 359-361
    • Roy, A.L.1    Carruthers, C.2    Gutjahr, T.3    Roeder, R.G.4
  • 26
    • 0031038046 scopus 로고    scopus 로고
    • BAP-135, a target for Bruton's tyrosine kinase in response to B cell receptor engagement
    • Yang WY, Desiderio S. 1997. BAP-135, a target for Bruton's tyrosine kinase in response to B cell receptor engagement. Proc Natl Acad SciUSA 94:604-609. http://dx.doi.org/10.1073/pnas.94.2.604.
    • (1997) Proc Natl Acad SciUSA , vol.94 , pp. 604-609
    • Yang, W.Y.1    Desiderio, S.2
  • 27
    • 84921531818 scopus 로고    scopus 로고
    • Proteomic analysis of ubiquitinlike posttranslational modifications induced by the adenovirus E4-ORF3 protein
    • Sohn S-Y, Bridges RG, Hearing P. 2015. Proteomic analysis of ubiquitinlike posttranslational modifications induced by the adenovirus E4-ORF3 protein. J Virol 89:1744-1755. http://dx.doi.org/10.1128/JVI.02892-14.
    • (2015) J Virol , vol.89 , pp. 1744-1755
    • Sohn, S.-Y.1    Bridges, R.G.2    Hearing, P.3
  • 28
    • 0017870263 scopus 로고
    • Isolation of deletion and substitution mutants of adenovirus type 5
    • Jones N, Shenk T. 1978. Isolation of deletion and substitution mutants of adenovirus type 5. Cell 13:181-188. http://dx.doi.org/10.1016/0092-8674(78)90148-4.
    • (1978) Cell , vol.13 , pp. 181-188
    • Jones, N.1    Shenk, T.2
  • 29
    • 0029977774 scopus 로고    scopus 로고
    • Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli
    • Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M. 1996. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 70:4805-4810.
    • (1996) J Virol , vol.70 , pp. 4805-4810
    • Chartier, C.1    Degryse, E.2    Gantzer, M.3    Dieterle, A.4    Pavirani, A.5    Mehtali, M.6
  • 31
    • 33644768122 scopus 로고    scopus 로고
    • Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption
    • Hoppe A, Beech SJ, Dimmock J, Leppard KN. 2006. Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption. J Virol 80:3042-3049. http://dx.doi.org/10.1128/JVI.80.6.3042-3049.2006.
    • (2006) J Virol , vol.80 , pp. 3042-3049
    • Hoppe, A.1    Beech, S.J.2    Dimmock, J.3    Leppard, K.N.4
  • 32
    • 0033571214 scopus 로고    scopus 로고
    • SUMO-1 modification activates the transcriptional response of p53
    • Rodriguez MS, Desterro JMP, Lain S, Midgley CA, Lane DP, Hay RT. 1999. SUMO-1 modification activates the transcriptional response of p53. EMBO J 18:6455-6461. http://dx.doi.org/10.1093/emboj/18.22.6455.
    • (1999) EMBO J , vol.18 , pp. 6455-6461
    • Rodriguez, M.S.1    Desterro, J.M.P.2    Lain, S.3    Midgley, C.A.4    Lane, D.P.5    Hay, R.T.6
  • 33
  • 34
    • 0037311411 scopus 로고    scopus 로고
    • Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 E1b 55K protein are controlled by E4 Orf6 protein
    • Lethbridge KJ, Scott GE, Leppard KN. 2003. Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 E1b 55K protein are controlled by E4 Orf6 protein. J Gen Virol 84:259-268. http://dx.doi.org/10.1099/vir.0.18820-0.
    • (2003) J Gen Virol , vol.84 , pp. 259-268
    • Lethbridge, K.J.1    Scott, G.E.2    Leppard, K.N.3
  • 35
    • 77951991690 scopus 로고    scopus 로고
    • Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification
    • Shi HX, Yang K, Liu X, Liu XY, Wei B, Shan YF, Zhu LH, Wang C. 2010. Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol Cell Biol 30:2424-2436. http://dx.doi.org/10.1128/MCB.01466-09.
    • (2010) Mol Cell Biol , vol.30 , pp. 2424-2436
    • Shi, H.X.1    Yang, K.2    Liu, X.3    Liu, X.Y.4    Wei, B.5    Shan, Y.F.6    Zhu, L.H.7    Wang, C.8
  • 36
    • 80054081798 scopus 로고    scopus 로고
    • Genomic and chromatin signals underlying transcription start-site selection
    • Valen E, Sandelin A. 2011. Genomic and chromatin signals underlying transcription start-site selection. Trends Genet 27:475-485. http://dx.doi.org/10.1016/j.tig.2011.08.001.
    • (2011) Trends Genet , vol.27 , pp. 475-485
    • Valen, E.1    Sandelin, A.2
  • 37
    • 34249098071 scopus 로고    scopus 로고
    • Mammalian RNA polymerase II core promoters: insights from genome-wide studies
    • Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. 2007. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8:424-436. http://dx.doi.org/10.1038/nrg2026.
    • (2007) Nat Rev Genet , vol.8 , pp. 424-436
    • Sandelin, A.1    Carninci, P.2    Lenhard, B.3    Ponjavic, J.4    Hayashizaki, Y.5    Hume, D.A.6
  • 38
    • 0028153702 scopus 로고
    • DNA sequence requirements for transcription initiator activity in mammalian cells
    • Javahery R, Khachi A, Lo K, Zenzie-Gregory B, Smale ST. 1994. DNA sequence requirements for transcription initiator activity in mammalian cells. Mol Cell Biol 14:116-127.
    • (1994) Mol Cell Biol , vol.14 , pp. 116-127
    • Javahery, R.1    Khachi, A.2    Lo, K.3    Zenzie-Gregory, B.4    Smale, S.T.5
  • 39
    • 0141792096 scopus 로고    scopus 로고
    • DNA synthesis-dependent relief of repression of transcription from the adenovirus type 2 IVa(2) promoter by a cellular protein
    • Huang W, Kiefer J, Whalen D, Flint SJ. 2003. DNA synthesis-dependent relief of repression of transcription from the adenovirus type 2 IVa(2) promoter by a cellular protein. Virology 314:394-402. http://dx.doi.org/10.1016/S0042-6822(03)00431-8.
    • (2003) Virology , vol.314 , pp. 394-402
    • Huang, W.1    Kiefer, J.2    Whalen, D.3    Flint, S.J.4
  • 40
    • 11144225469 scopus 로고    scopus 로고
    • Viral DNA synthesis-dependent titration of a cellular repressor activates transcription of the human adenovirus type 2 IVa(2) gene
    • Iftode C, Flint SJ. 2004. Viral DNA synthesis-dependent titration of a cellular repressor activates transcription of the human adenovirus type 2 IVa(2) gene. Proc Natl Acad Sci USA 101:17831-17836. http://dx.doi.org/10.1073/pnas.0407786101.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 17831-17836
    • Iftode, C.1    Flint, S.J.2
  • 41
    • 0034715788 scopus 로고    scopus 로고
    • Identification of a cellular repressor of transcription of the adenoviral late IVa(2) gene that is unaltered in activity in infected cells
    • Lin HJ, Flint SJ. 2000. Identification of a cellular repressor of transcription of the adenoviral late IVa(2) gene that is unaltered in activity in infected cells. Virology 277:397-410. http://dx.doi.org/10.1006/viro.2000.0598.
    • (2000) Virology , vol.277 , pp. 397-410
    • Lin, H.J.1    Flint, S.J.2
  • 42
    • 33749656892 scopus 로고    scopus 로고
    • Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression
    • Hakre S, Tussie-Luna MI, Ashworth T, Novina CD, Settleman J, Sharp PA, Roy AL. 2006. Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression. Mol Cell 24:301-308. http://dx.doi.org/10.1016/j.molcel.2006.09.005.
    • (2006) Mol Cell , vol.24 , pp. 301-308
    • Hakre, S.1    Tussie-Luna, M.I.2    Ashworth, T.3    Novina, C.D.4    Settleman, J.5    Sharp, P.A.6    Roy, A.L.7
  • 43
    • 18144401244 scopus 로고    scopus 로고
    • Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication
    • Evans JD, Hearing P. 2005. Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. J Virol 79:6207-6215. http://dx.doi.org/10.1128/JVI.79.10.6207-6215.2005.
    • (2005) J Virol , vol.79 , pp. 6207-6215
    • Evans, J.D.1    Hearing, P.2
  • 44
    • 84867212983 scopus 로고    scopus 로고
    • Serine 192 in the tiny RS repeat of the adenoviral L4-33K splicing enhancer protein is essential for function and reorganization of the protein to the periphery of viral replication centers
    • Ostberg S, Persson HT, Akusjarvi G. 2012. Serine 192 in the tiny RS repeat of the adenoviral L4-33K splicing enhancer protein is essential for function and reorganization of the protein to the periphery of viral replication centers. Virology 433:273-281. http://dx.doi.org/10.1016/j.virol.2012.08.021.
    • (2012) Virology , vol.433 , pp. 273-281
    • Ostberg, S.1    Persson, H.T.2    Akusjarvi, G.3
  • 45
    • 0043269205 scopus 로고    scopus 로고
    • The RNA polymerase II core promoter
    • Smale ST, Kadonga JT. 2003. The RNA polymerase II core promoter. Annu Rev Biochem 72:449-479. http://dx.doi.org/10.1146/annurev.biochem.72.121801.161520.
    • (2003) Annu Rev Biochem , vol.72 , pp. 449-479
    • Smale, S.T.1    Kadonga, J.T.2
  • 46
    • 0026515868 scopus 로고
    • Roles of TATA and initiator elements in determining the start site location and direction of RNA polymerase II transcription
    • O'Shea-Greenfield A, Smale ST. 1992. Roles of TATA and initiator elements in determining the start site location and direction of RNA polymerase II transcription. J Biol Chem 267:1391-1402.
    • (1992) J Biol Chem , vol.267 , pp. 1391-1402
    • O'Shea-Greenfield, A.1    Smale, S.T.2
  • 47
    • 0030695247 scopus 로고    scopus 로고
    • Cloning of an Inr-and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1
    • Roy AL, Du H, Gregor PD, Novina CD, Martinez E, Roeder RG. 1997. Cloning of an Inr-and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO J 16:7091-7104. http://dx.doi.org/10.1093/emboj/16.23.7091.
    • (1997) EMBO J , vol.16 , pp. 7091-7104
    • Roy, A.L.1    Du, H.2    Gregor, P.D.3    Novina, C.D.4    Martinez, E.5    Roeder, R.G.6
  • 48
    • 0034714398 scopus 로고    scopus 로고
    • Alternatively spliced isoforms of TFII-Icomplex formation, nuclear translocation, and differential gene regulation
    • Cheriyath V, Roy AL. 2000. Alternatively spliced isoforms of TFII-Icomplex formation, nuclear translocation, and differential gene regulation. J Biol Chem 275:26300-26308. http://dx.doi.org/10.1074/jbc.M002980200.
    • (2000) J Biol Chem , vol.275 , pp. 26300-26308
    • Cheriyath, V.1    Roy, A.L.2
  • 49
    • 77952566949 scopus 로고    scopus 로고
    • Mechanisms, regulation and consequences of protein SUMOylation
    • Wilkinson KA, Henley JM. 2010. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428:133-145. http://dx.doi.org/10.1042/BJ20100158.
    • (2010) Biochem J , vol.428 , pp. 133-145
    • Wilkinson, K.A.1    Henley, J.M.2
  • 50
    • 0031060109 scopus 로고    scopus 로고
    • The initiator element of the adenovirus major late promoter has an important role in transcription initiation in vivo
    • Lu H, Reach MD, Minaya E, Young CSH. 1997. The initiator element of the adenovirus major late promoter has an important role in transcription initiation in vivo. J Virol 71:102-109.
    • (1997) J Virol , vol.71 , pp. 102-109
    • Lu, H.1    Reach, M.D.2    Minaya, E.3    Young, C.S.H.4
  • 51
    • 0037270044 scopus 로고    scopus 로고
    • The structure and function of the adenovirus major late promoter
    • Young CSH. 2003. The structure and function of the adenovirus major late promoter. Curr Top Microbiol Immunol 272:213-249.
    • (2003) Curr Top Microbiol Immunol , vol.272 , pp. 213-249
    • Young, C.S.H.1
  • 52
    • 33846472402 scopus 로고    scopus 로고
    • The adenovirus L4 33-kilodalton protein binds to intragenic sequences of the major late promoter required for late phase-specific stimulation of transcription
    • Ali H, LeRoy G, Bridge G, Flint SJ. 2007. The adenovirus L4 33-kilodalton protein binds to intragenic sequences of the major late promoter required for late phase-specific stimulation of transcription. J Virol 81:1327-1338. http://dx.doi.org/10.1128/JVI.01584-06.
    • (2007) J Virol , vol.81 , pp. 1327-1338
    • Ali, H.1    LeRoy, G.2    Bridge, G.3    Flint, S.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.