메뉴 건너뛰기




Volumn 31, Issue 12, 2015, Pages i357-i364

Exploiting ontology graph for predicting sparsely annotated gene function

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84931061289     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv260     Document Type: Conference Paper
Times cited : (88)

References (32)
  • 1
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • Ashburner M., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25-29
    • (2000) The Gene Ontology Consortium. Nat. Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 2
    • 84902463639 scopus 로고    scopus 로고
    • New directions for diffusion-based network prediction of protein function: Incorporating pathways with confidence
    • Cao M., et al. (2014). New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence. Bioinformatics, 30, i219-i227
    • (2014) Bioinformatics , vol.30 , pp. i219-i227
    • Cao, M.1
  • 3
    • 84885993905 scopus 로고    scopus 로고
    • Going the distance for protein function prediction: A new distance metric for protein interaction networks
    • Cao M., et al. (2013). Going the distance for protein function prediction: a new distance metric for protein interaction networks. PloS One, 8, e76339
    • (2013) Plos One , vol.8 , pp. e76339
    • Cao, M.1
  • 4
    • 84926358894 scopus 로고    scopus 로고
    • Diffusion component analysis: Unraveling functional topology in biological networks
    • Springer International Publishing, Switzerland 9029
    • Cho H., et al. (2015). Diffusion component analysis: unraveling functional topology in biological networks. In: Research in Computational Molecular Biology. Lecture Notes in Computer Science, Springer International Publishing, Switzerland, Vol. 9029, pp. 62-64
    • (2015) Research in Computational Molecular Biology Lecture Notes in Computer Science , pp. 62-64
    • Cho, H.1
  • 5
    • 84879904959 scopus 로고    scopus 로고
    • Information-theoretic evaluation of predicted ontological annotations
    • Clark W.T. and Radivojac P. (2013). Information-theoretic evaluation of predicted ontological annotations. Bioinformatics, 29, i53-i61
    • (2013) Bioinformatics , vol.29 , pp. i53-i61
    • Clark, W.T.1    Radivojac, P.2
  • 6
    • 84872198906 scopus 로고    scopus 로고
    • A gene ontology inferred from molecular networks
    • Dutkowski J., et al. (2013). A gene ontology inferred from molecular networks. Nat. Biotechnol., 31, 38-45
    • (2013) Nat. Biotechnol , vol.31 , pp. 38-45
    • Dutkowski, J.1
  • 7
    • 33847211758 scopus 로고    scopus 로고
    • Improving protein function prediction using the hierarchical structure of the gene ontology
    • CIBCB'05. Proceedings of the 2005 IEEE Symposium on. IEEE
    • Eisner R., et al. (2005). Improving protein function prediction using the hierarchical structure of the gene ontology. In: Computational Intelligence in Bioinformatics and Computational Biology, 2005. CIBCB'05. Proceedings of the 2005 IEEE Symposium on. IEEE, pp. 1-10
    • (2005) Computational Intelligence in Bioinformatics and Computational Biology , vol.2005 , pp. 1-10
    • Eisner, R.1
  • 8
    • 84876515907 scopus 로고    scopus 로고
    • String v9.1: Protein-protein interaction networks, with increased coverage and integration
    • Database issue
    • Franceschini A., et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res., 41 (Database issue) , D808-D815
    • (2013) Nucleic Acids Res , vol.41 , pp. D808-D815
    • Franceschini, A.1
  • 9
    • 84907027309 scopus 로고    scopus 로고
    • Integration of molecular network data reconstructs gene ontology
    • Gligorijevic V., et al. (2014). Integration of molecular network data reconstructs Gene Ontology. Bioinformatics, 30, i594-i600
    • (2014) Bioinformatics , vol.30 , pp. i594-i600
    • Gligorijevic, V.1
  • 10
    • 33747738463 scopus 로고
    • Singular value decomposition and least squares solutions
    • Golub G.H. and Reinsch C. (1970). Singular value decomposition and least squares solutions. Numer. Math., 14, 403-420
    • (1970) Numer. Math , vol.14 , pp. 403-420
    • Golub, G.H.1    Reinsch, C.2
  • 11
    • 47549108100 scopus 로고    scopus 로고
    • Predicting gene function in a hierarchical context with an ensemble of classifiers
    • Guan Y., et al. (2008). Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol., 9 (Suppl 1) , S3
    • (2008) Genome Biol , vol.9 , pp. S3
    • Guan, Y.1
  • 12
    • 84907024436 scopus 로고    scopus 로고
    • The impact of incomplete knowledge on the evaluation of protein function prediction: A structured-output learning perspective
    • Jiang Y., et al. (2014). The impact of incomplete knowledge on the evaluation of protein function prediction: a structured-output learning perspective. Bioinformatics, 30, i609-i616
    • (2014) Bioinformatics , vol.30 , pp. i609-i616
    • Jiang, Y.1
  • 13
    • 1542327694 scopus 로고    scopus 로고
    • Whole-genome annotation by using evidence integration in functional-linkage networks
    • Karaoz U., et al. (2004). Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Natl. Acad. Sci. USA, 101, 2888-2893
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 2888-2893
    • Karaoz, U.1
  • 14
    • 47549098627 scopus 로고    scopus 로고
    • Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy
    • Kim W.K., et al. (2008). Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy. Genome Biol., 9 (Suppl 1) , S5
    • (2008) Genome Biol , vol.9 , pp. S5
    • Kim, W.K.1
  • 15
    • 41549139527 scopus 로고    scopus 로고
    • Walking the interactome for prioritization of candidate disease genes
    • Kohler S., et al. (2008). Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet., 82, 949-958
    • (2008) Am. J. Hum. Genet , vol.82 , pp. 949-958
    • Kohler, S.1
  • 16
    • 84902463000 scopus 로고    scopus 로고
    • Inferring gene ontologies from pairwise similarity data
    • Kramer M., et al. (2014). Inferring gene ontologies from pairwise similarity data. Bioinformatics, 30, i34-i42
    • (2014) Bioinformatics , vol.30 , pp. i34-i42
    • Kramer, M.1
  • 17
    • 1542271409 scopus 로고    scopus 로고
    • Predicting protein function from protein/protein interaction data: A probabilistic approach
    • Letovsky S. and Kasif S. (2003). Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics, 19 (Suppl 1) , i197-i204
    • (2003) Bioinformatics , vol.19 , pp. i197-i204
    • Letovsky, S.1    Kasif, S.2
  • 18
    • 76049094356 scopus 로고    scopus 로고
    • Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data
    • Milenkovic T., et al. (2010). Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. J.R. Soc. Interface, 7, 423-437
    • (2010) J.R. Soc. Interface , vol.7 , pp. 423-437
    • Milenkovic, T.1
  • 19
    • 49649109285 scopus 로고    scopus 로고
    • Uncovering biological network function via graphlet degree signatures
    • Milenkovic T. and Przulj N. (2008). Uncovering biological network function via graphlet degree signatures. Cancer Inform., 6, 257-273
    • (2008) Cancer Inform , vol.6 , pp. 257-273
    • Milenkovic, T.1    Przulj, N.2
  • 20
    • 77954309042 scopus 로고    scopus 로고
    • Fast integration of heterogeneous data sources for predicting gene function with limited annotation
    • Mostafavi S. and Morris Q. (2010). Fast integration of heterogeneous data sources for predicting gene function with limited annotation. Bioinformatics, 26, 1759-1765
    • (2010) Bioinformatics , vol.26 , pp. 1759-1765
    • Mostafavi, S.1    Morris, Q.2
  • 21
    • 47549107689 scopus 로고    scopus 로고
    • Genemania: A real-time multiple association network integration algorithm for predicting gene function
    • Mostafavi S., et al. (2008). GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol., 9 (Suppl. 1) , S4
    • (2008) Genome Biol , vol.9 , pp. S4
    • Mostafavi, S.1
  • 22
    • 33845701686 scopus 로고    scopus 로고
    • The art of gene function prediction
    • author reply 1475-1476
    • Murali T.M., et al. (2006). The art of gene function prediction. Nat. Biotechnol., 24, 1474-1475; author reply 1475-1476
    • (2006) Nat. Biotechnol , vol.24 , pp. 1474-1475
    • Murali, T.M.1
  • 23
    • 29144442904 scopus 로고    scopus 로고
    • Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps
    • Nabieva E., et al. (2005). Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 21 (Suppl 1) , i302-i310
    • (2005) Bioinformatics , vol.21 , pp. i302-i310
    • Nabieva, E.1
  • 24
    • 47549088657 scopus 로고    scopus 로고
    • Consistent probabilistic outputs for protein function prediction
    • Obozinski G., et al. (2008). Consistent probabilistic outputs for protein function prediction. Genome Biol., 9 (Suppl 1) , S6
    • (2008) Genome Biol , vol.9 , pp. S6
    • Obozinski, G.1
  • 25
    • 47549116997 scopus 로고    scopus 로고
    • A critical assessment of mus musculus gene function prediction using integrated genomic evidence
    • Peña-Castillo L., et al. (2008). A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biol., 9, S2
    • (2008) Genome Biol , vol.9 , pp. S2
    • Peña-Castillo, L.1
  • 26
    • 84874663959 scopus 로고    scopus 로고
    • A large-scale evaluation of computational protein function prediction
    • Radivojac P., et al. (2013). A large-scale evaluation of computational protein function prediction. Nat. Methods, 10, 221-227
    • (2013) Nat. Methods , vol.10 , pp. 221-227
    • Radivojac, P.1
  • 27
    • 79953174916 scopus 로고    scopus 로고
    • Metric labeling and semi-metric embedding for protein annotation prediction
    • Springer, London
    • Sefer E. and Kingsford C. (2011). Metric labeling and semi-metric embedding for protein annotation prediction. In: Research in Computational Molecular Biology. Springer, London, pp. 392-407
    • (2011) Research in Computational Molecular Biology , pp. 392-407
    • Sefer, E.1    Kingsford, C.2
  • 28
    • 79551587720 scopus 로고    scopus 로고
    • Cytoscape 2.8: New features for data integration and network visualization
    • Smoot M.E., et al. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27, 431-432
    • (2011) Bioinformatics , vol.27 , pp. 431-432
    • Smoot, M.E.1
  • 29
    • 77951518446 scopus 로고    scopus 로고
    • Hierarchical classification of gene ontology terms using the gostruct method
    • Sokolov A. and Ben-Hur A. (2010). Hierarchical classification of Gene Ontology terms using the GOstruct method. J. Bioinform. Comput. Biol., 8, 357-376
    • (2010) J. Bioinform. Comput. Biol , vol.8 , pp. 357-376
    • Sokolov, A.1    Ben-Hur, A.2
  • 30
    • 84876235775 scopus 로고    scopus 로고
    • Function-function correlated multi-label protein function prediction over interaction networks
    • Wang H., et al. (2013). Function-function correlated multi-label protein function prediction over interaction networks. J. Comput. Biol., 20, 322-343
    • (2013) J. Comput. Biol , vol.20 , pp. 322-343
    • Wang, H.1
  • 31
    • 84958553079 scopus 로고    scopus 로고
    • Correlated protein function prediction via maximization of data-knowledge consistency
    • Springer, London
    • Wang H., et al. (2014). Correlated protein function prediction via maximization of data-knowledge consistency. In: Research in Computational Molecular Biology. Springer, London, pp. 311-325
    • (2014) Research in Computational Molecular Biology , pp. 311-325
    • Wang, H.1
  • 32
    • 0031345518 scopus 로고    scopus 로고
    • Algorithm 778: L-bfgs-b: Fortran subroutines for largescale bound-constrained optimization
    • Zhu C., et al. (1997). Algorithm 778: L-BFGS-B: Fortran subroutines for largescale bound-constrained optimization. ACM Trans. Math. Softw., 23, 550-560
    • (1997) ACM Trans. Math. Softw , vol.23 , pp. 550-560
    • Zhu, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.