-
2
-
-
80052874105
-
Iterative quantization: A procrustean approach to learning binary codes
-
Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. In Proc. CVPR, 2011.
-
(2011)
Proc. CVPR
-
-
Gong, Y.1
Lazebnik, S.2
-
3
-
-
77956004473
-
Aggregating local descriptors into a compact image representation
-
H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local descriptors into a compact image representation. In Proc. CVPR, 2010.
-
(2010)
Proc. CVPR
-
-
Jegou, H.1
Douze, M.2
Schmid, C.3
Perez, P.4
-
5
-
-
84858740468
-
Learning to hash with binary reconstructive embeddings
-
B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings. In NIPS 22, 2009.
-
(2009)
NIPS
, vol.22
-
-
Kulis, B.1
Darrell, T.2
-
6
-
-
84860241633
-
Kernelized locality-sensitive hashing
-
B. Kulis and K. Grauman. Kernelized locality-sensitive hashing. TPAMI, 2012.
-
(2012)
TPAMI
-
-
Kulis, B.1
Grauman, K.2
-
7
-
-
70350618771
-
Fast similarity search for learned metrics
-
B. Kulis, P. Jain, and K. Grauman. Fast similarity search for learned metrics. TPAMI, 31(12):2143-2157, 2009.
-
(2009)
TPAMI
, vol.31
, Issue.12
, pp. 2143-2157
-
-
Kulis, B.1
Jain, P.2
Grauman, K.3
-
9
-
-
77955986970
-
Weakly-supervised hashing in kernel space
-
Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashing in kernel space. In Proc. CVPR, 2010.
-
(2010)
Proc. CVPR
-
-
Mu, Y.1
Shen, J.2
Yan, S.3
-
11
-
-
80053457714
-
Minimal loss hashing for compact binary codes
-
M. Norouzi and D. J. Fleet. Minimal loss hashing for compact binary codes. In Proc. ICML, 2011.
-
(2011)
Proc. ICML
-
-
Norouzi, M.1
Fleet, D.J.2
-
12
-
-
0035328421
-
Modeling the shape of the scene: A holistic representation of the spatial envelope
-
A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV, 42(3):145-175, 2001.
-
(2001)
IJCV
, vol.42
, Issue.3
, pp. 145-175
-
-
Oliva, A.1
Torralba, A.2
-
14
-
-
81855191888
-
Ldahash: Improved matching with smaller descriptors
-
C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua. Ldahash: Improved matching with smaller descriptors. TPAMI, 34(1):66-78, 2012.
-
(2012)
TPAMI
, vol.34
, Issue.1
, pp. 66-78
-
-
Strecha, C.1
Bronstein, A.M.2
Bronstein, M.M.3
Fua, P.4
-
15
-
-
54749092170
-
80 million tiny images: A large dataset for non-parametric object and scene recognition
-
A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: a large dataset for non-parametric object and scene recognition. TPAMI, 30(11):1958-1970, 2008.
-
(2008)
TPAMI
, vol.30
, Issue.11
, pp. 1958-1970
-
-
Torralba, A.1
Fergus, R.2
Freeman, W.T.3
-
16
-
-
84866679070
-
Small codes and large databases for recognition
-
A. Torralba, R. Fergus, and Y. Weiss. Small codes and large databases for recognition. In Proc. CVPR, 2008.
-
(2008)
Proc. CVPR
-
-
Torralba, A.1
Fergus, R.2
Weiss, Y.3
-
17
-
-
84865410773
-
Semi-supervised hashing for large scale search
-
J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large scale search. TPAMI, 2012.
-
(2012)
TPAMI
-
-
Wang, J.1
Kumar, S.2
Chang, S.-F.3
-
19
-
-
84863036764
-
Complementary hashing for approximate nearest neighbor search
-
H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu. Complementary hashing for approximate nearest neighbor search. In Proc. ICCV, 2011.
-
(2011)
Proc. ICCV
-
-
Xu, H.1
Wang, J.2
Li, Z.3
Zeng, G.4
Li, S.5
Yu, N.6
|