메뉴 건너뛰기




Volumn 34, Issue 1, 2015, Pages 103-112

A support vector machine to identify irrigated crop types using time-series Landsat NDVI data

Author keywords

Crop classification; Landsat; NDVI; Support vector machines; SVM

Indexed keywords

ACCURACY ASSESSMENT; AGRICULTURAL LAND; ARID REGION; CROPPING PRACTICE; IDENTIFICATION METHOD; IMAGE CLASSIFICATION; IRRIGATION; LANDSAT; NDVI; SATELLITE DATA; SATELLITE IMAGERY; SEMIARID REGION; TIME SERIES; VEGETATION CLASSIFICATION;

EID: 84908440807     PISSN: 15698432     EISSN: 1872826X     Source Type: Journal    
DOI: 10.1016/j.jag.2014.07.002     Document Type: Article
Times cited : (291)

References (49)
  • 1
    • 84906095245 scopus 로고    scopus 로고
    • Active Management Area Climate
    • Retrieved from (accessed 28.08.13).
    • ADWR, 2012a. Active Management Area Climate, Retrieved from http://www. azwater.gov/AzDWR/StatewidePlanning/WaterAtlas/ActiveManagementAreas/ PlanningAreaOverview/Climate.htm (accessed 28.08.13).
    • (2012)
  • 2
    • 84920693649 scopus 로고    scopus 로고
    • Phoenix AMA Cultural Water Demand
    • Retrieved from (accessed 28.08.13).
    • ADWR, 2012b. Phoenix AMA Cultural Water Demand, Retrieved from http://www. azwater.gov/AzDWR/StatewidePlanning/WaterAtlas/ActiveManagementAreas/ Cultural/PhoenixAMA.htm (accessed 28.08.13).
    • (2012)
  • 3
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation
    • Strobl,J. (Ed.), . Beiträge zum AGIT-Symposium Salzburg 2000. Herbert Wichmann Verlag, Karlsruhe.
    • Baatz, M.,Schäpe, A., 2000. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Strobl,J. (Ed.), Angewandte Geographische Informationsverarbeitung XII. Beiträge zum AGIT-Symposium Salzburg 2000. Herbert Wichmann Verlag, Karlsruhe, pp. 12-23.
    • (2000) Angewandte Geographische Informationsverarbeitung XII , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 4
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalisation performance: support vector machines
    • Belousov, A.I., Verzakov, S.A., von Frese, J., 2002. A flexible classification approach with optimal generalisation performance: support vector machines. Chemom. Intell. Lab. Syst. 64,15-25.
    • (2002) Chemom. Intell. Lab. Syst , vol.64 , pp. 15-25
    • Belousov, A.I.1    Verzakov, S.A.2    von Frese, J.3
  • 5
    • 77952766987 scopus 로고    scopus 로고
    • A user's guide to support vector machines
    • Carugo, O., Eisenhaber, F. (Eds.), . Humana Press .
    • Ben-Hur, A., Weston, J., 2010. A user's guide to support vector machines. In: Carugo, O., Eisenhaber, F. (Eds.), Data Mining Techniques for the Life Sciences. Humana Press, pp. 223-239.
    • (2010) Data Mining Techniques for the Life Sciences , pp. 223-239
    • Ben-Hur, A.1    Weston, J.2
  • 6
    • 0034270699 scopus 로고    scopus 로고
    • Linear spectral mixture models and support vector machines for remote sensing
    • Brown, M., Lewis, H.G., Gunn, S.R., 2000. Linear spectral mixture models and support vector machines for remote sensing. IEEE Trans. Geosci. Remote Sens. 38, 2346-2360.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , pp. 2346-2360
    • Brown, M.1    Lewis, H.G.2    Gunn, S.R.3
  • 7
    • 67651166635 scopus 로고    scopus 로고
    • A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples
    • Bruzzone, L., Persello, C, 2009. A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples. IEEE Trans. Geosci. Remote Sens. 47, 2142-2154.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 2142-2154
    • Bruzzone, L.1    Persello, C.2
  • 8
    • 39749111391 scopus 로고    scopus 로고
    • Contribution of multispectral and multitemporal information from MODIS images to land cover classification
    • Carrão, H., Goncalves, P., Caetano, M., 2008. Contribution of multispectral and multitemporal information from MODIS images to land cover classification. Remote Sens. Environ. 112, 986-997.
    • (2008) Remote Sens. Environ , vol.112 , pp. 986-997
    • Carrão, H.1    Goncalves, P.2    Caetano, M.3
  • 9
    • 77952425356 scopus 로고    scopus 로고
    • Water, People, and the Future: Water Availability for Agriculture in the United States
    • Issue Paper 44. Council for Agricultural Science and Technology (CAST), Ames, IA.
    • CAST, 2009. Water, People, and the Future: Water Availability for Agriculture in the United States, Issue Paper 44. Council for Agricultural Science and Technology (CAST), Ames, IA.
    • (2009)
  • 11
    • 36448968934 scopus 로고    scopus 로고
    • Corn and soybean mapping in the United States using MODIS time-series data sets
    • Chang, J., Hansen, M.C., Pittman, K., Carroll, M., DiMiceli, C, 2007. Corn and soybean mapping in the United States using MODIS time-series data sets. Agron. J. 99, 1654-1664.
    • (2007) Agron. J , vol.99 , pp. 1654-1664
    • Chang, J.1    Hansen, M.C.2    Pittman, K.3    Carroll, M.4    DiMiceli, C.5
  • 13
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Chih-Wei, H., Chih-Jen, L., 2002. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13, 415-425.
    • (2002) IEEE Trans. Neural Netw , vol.13 , pp. 415-425
    • Chih-Wei, H.1    Chih-Jen, L.2
  • 14
    • 84871294336 scopus 로고    scopus 로고
    • Assessing the Accuracy of Remotely Sensed Data: Principle and Practices
    • 2nd ed. Levis Publishers, Boca Raton, FL.
    • Congalton, R.G., Green, K., 2008. Assessing the Accuracy of Remotely Sensed Data: Principle and Practices, 2nd ed. Levis Publishers, Boca Raton, FL.
    • (2008)
    • Congalton, R.G.1    Green, K.2
  • 15
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C, Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20 (3), 273-297, http://dx.doi.org/10.1023/a:1022627411411.
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 84920681501 scopus 로고    scopus 로고
    • We Forget that the Water Cycle and the Life Cycle are One
    • Arizona Department of Water Resources (ADWR), Retrieved from (accessed 28.08.13).
    • Cousteau, J., 2012. We Forget that the Water Cycle and the Life Cycle are One. Arizona Department of Water Resources (ADWR), Retrieved from http://www. azwater.gov/AzDWR/StatewidePlanning/Conservation2/Agriculture/ (accessed 28.08.13).
    • (2012)
    • Cousteau, J.1
  • 17
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas
    • Dalponte, M., Bruzzone, L., Gianelle, D., 2008. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 46,1416-1427.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 18
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification
    • Foody, G.M., Mathur, A., 2004. Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sens. Environ. 93,107-117.
    • (2004) Remote Sens. Environ , vol.93 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 19
    • 77954949039 scopus 로고    scopus 로고
    • Peak water limits to freshwater withdrawal and use
    • Gleick, P.H., Palaniappan, M., 2010. Peak water limits to freshwater withdrawal and use. Proc. Natl. Acad. Sci. U. S. A. 107,11155-11162.
    • (2010) Proc. Natl. Acad. Sci. U. S. A , vol.107 , pp. 11155-11162
    • Gleick, P.H.1    Palaniappan, M.2
  • 20
    • 4944228528 scopus 로고    scopus 로고
    • A Practical Guide to Support Vector Classification
    • Retrieved from (accessed 20.09.2013).
    • Hsu, C.W., Chang, C.-C, Lin, C.J., 2010. A Practical Guide to Support Vector Classification, Retrieved from http://www.csie.ntu.edu.tw/ cjlin/papers/guide/guide.pdf (accessed 20.09.2013).
    • (2010)
    • Hsu, C.W.1    Chang C.-C Lin, C.J.2
  • 21
    • 84920651959 scopus 로고    scopus 로고
    • Impacts of Agricultural Production and Specialty Crops on Arizona's Economy in 2007
    • Initial Report. Department of Agricultural and Resource Economics, The College of Agriculture and Life Sciences, The University of Ariziona .
    • Impacts of Agricultural Production, 2010. Impacts of Agricultural Production and Specialty Crops on Arizona's Economy in 2007, Initial Report. Department of Agricultural and Resource Economics, The College of Agriculture and Life Sciences, The University of Ariziona, pp. 33.
    • (2010) , pp. 33
  • 22
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: a systematic study
    • Japkowicz, N., Stephen, S., 2002. The class imbalance problem: a systematic study.Intell. Data Anal. 6 (5), 429-449.
    • (2002) Intell. Data Anal. , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 23
    • 71049124529 scopus 로고    scopus 로고
    • Global Climate Change Impacts in the United States
    • Cambridge University Press, Cambridge, UK.
    • Karl,T.R., Melillo,J., Peterson, T., 2009. Global Climate Change Impacts in the United States. Cambridge University Press, Cambridge, UK.
    • (2009)
    • Karl, T.R.1    Melillo, J.2    Peterson, T.3
  • 24
    • 84883510217 scopus 로고    scopus 로고
    • Objectoriented crop classification using multitemporal ETM + SLC-off imagery and random forest
    • Long, J.A., Lawrence, R.L., Greenwood, M.C., Marshall, L, Miller, P.R., 2013. Objectoriented crop classification using multitemporal ETM + SLC-off imagery and random forest. GISci. Remote Sens. 50,418-436.
    • (2013) GISci. Remote Sens , vol.50 , pp. 418-436
    • Long, J.A.1    Lawrence, R.L.2    Greenwood, M.C.3    Marshall, L.4    Miller, P.R.5
  • 25
    • 84884514639 scopus 로고    scopus 로고
    • Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines
    • Löw, F., Michel, U., Dech, S., Conrad, C, 2013. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRSJ. Photogram. Remote Sens. 85,102-119.
    • (2013) ISPRSJ. Photogram. Remote Sens , vol.85 , pp. 102-119
    • Löw, F.1    Michel, U.2    Dech, S.3    Conrad, C.4
  • 27
    • 41249095662 scopus 로고    scopus 로고
    • A multi-scale segmentation approach to filling gaps in Landsat ETM + SLC-off images
    • Maxwell, S.K., Schmidt, G.L., Storey, J.C., 2007. A multi-scale segmentation approach to filling gaps in Landsat ETM + SLC-off images. Int. J. Remote Sens. 28, 5339-5356.
    • (2007) Int. J. Remote Sens , vol.28 , pp. 5339-5356
    • Maxwell, S.K.1    Schmidt, G.L.2    Storey, J.C.3
  • 29
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks.
    • Ou, G., Murphey, Y.L., 2007. Multi-class pattern classification using neural networks. Pattern Recognit. 40 (1), 4-18, http://dx.doi.org/10.1016/j.patcog.2006.04.041.
    • (2007) Pattern Recognit , vol.40 , Issue.1 , pp. 4-18
    • Ou, G.1    Murphey, Y.L.2
  • 30
    • 77954068919 scopus 로고    scopus 로고
    • Dry times ahead
    • Overpeck, J., Udall, B., 2010. Dry times ahead. Science 328,1642-1643.
    • (2010) Science , vol.328 , pp. 1642-1643
    • Overpeck, J.1    Udall, B.2
  • 31
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textural features and crop phenology
    • Peña-Barragán,J.M., Ngugi, M.K., Plant, R.E., Six, J., 2011. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 115,1301-1316.
    • (2011) Remote Sens. Environ , vol.115 , pp. 1301-1316
    • Pẽna-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 33
    • 41549098777 scopus 로고    scopus 로고
    • Monitoring farmers' decisions on Mediterranean irrigated crops using satellite image time series
    • Serra, P., Pons, X., 2008. Monitoring farmers' decisions on Mediterranean irrigated crops using satellite image time series. Int. J. Remote Sens. 29, 2293-2316.
    • (2008) Int. J. Remote Sens , vol.29 , pp. 2293-2316
    • Serra, P.1    Pons, X.2
  • 34
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of support vector machine, neural network, and CART algorithms forthe land-cover classification using limited training data points
    • Shao, Y., Lunetta, R.S., 2012. Comparison of support vector machine, neural network, and CART algorithms forthe land-cover classification using limited training data points. ISPRSJ. Photogram. Remote Sens. 70, 78-87.
    • (2012) ISPRSJ. Photogram. Remote Sens , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2
  • 35
    • 76249131406 scopus 로고    scopus 로고
    • Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data
    • Shao, Y., Lunetta, R.S., EdiriwickremaJ., Iiames,J., 2010. Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data. Photogram. Eng. Remote Sens. 75, 73-84.
    • (2010) Photogram. Eng. Remote Sens , vol.75 , pp. 73-84
    • Shao, Y.1    Lunetta, R.S.2    Ediriwickrema, J.3    Iiames, J.4
  • 37
    • 84869238704 scopus 로고    scopus 로고
    • An automated cropland classification algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data
    • Thenkabail, P.S., Wu, Z., 2012. An automated cropland classification algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data. Remote Sens. 4, 2890-2918.
    • (2012) Remote Sens , vol.4 , pp. 2890-2918
    • Thenkabail, P.S.1    Wu, Z.2
  • 39
    • 26844478241 scopus 로고    scopus 로고
    • Sequential masking classification of multi-temporal Landsat 7 ETM + images for field-based crop mapping in Karacabey, Turkey
    • Turker, M., Arikan, M., 2005. Sequential masking classification of multi-temporal Landsat 7 ETM + images for field-based crop mapping in Karacabey, Turkey. Int. J. Remote Sens. 26,3813-3830.
    • (2005) Int. J. Remote Sens , vol.26 , pp. 3813-3830
    • Turker, M.1    Arikan, M.2
  • 40
    • 84920694930 scopus 로고    scopus 로고
    • Arizona Field Office 2004 Annual Statistics Bulletin
    • Retrieved from (accessed 25.11.13).
    • USDA-NASS, 2004. Arizona Field Office 2004 Annual Statistics Bulletin, Retrieved from http://www.nass.usda.gov/Statistics_by_State/Arizona/Publications/ Bulletin/04bul/main.htm (accessed 25.11.13).
    • (2004)
  • 41
    • 84859548611 scopus 로고    scopus 로고
    • Arizona Cropland Data Layer
    • USDA-NASS, Retrieved from (accessed 17.09.13).
    • USDA-NASS, 2010. Arizona Cropland Data Layer. USDA-NASS, Retrieved from http://www.nass.usda.gov/research/Cropland/metadata/metadata_az10.htm (accessed 17.09.13).
    • (2010)
  • 42
    • 84881091622 scopus 로고    scopus 로고
    • Cropland Data Layer Metadata
    • USDA-NASS, Retrieved from (accessed 17.09.13).
    • USDA-NASS, 2013. Cropland Data Layer Metadata. USDA-NASS, Retrieved from http://www.nass.usda.gov/research/Cropland/metadata/meta.htm (accessed 17.09.13).
    • (2013)
  • 43
    • 84920651804 scopus 로고    scopus 로고
    • Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin-MLRA 40
    • Retrieved from (accessed 17.09.13).
    • USDA-NRCS, 2013. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin-MLRA 40, Retrieved from http://soils.usda.gov/MLRAExplorer (accessed 17.09.13).
    • (2013)
  • 44
    • 0003450542 scopus 로고    scopus 로고
    • The Nature of Statistical Learning Theory
    • 2nd ed. Springer, New York, NY.
    • Vapnik, V.N., 1999. The Nature of Statistical Learning Theory, 2nd ed. Springer, New York, NY.
    • (1999)
    • Vapnik, V.N.1
  • 45
    • 84864408692 scopus 로고    scopus 로고
    • Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products
    • Vintrou, E., Desbrosse, A., Bégué, A., Traoré, S., Baron, C, LoSeen, D., 2012. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 14, 83-93.
    • (2012) Int. J. Appl. Earth Obs. Geoinf , vol.14 , pp. 83-93
    • Vintrou, E.1    Desbrosse, A.2    Bégué, A.3    Traoré, S.4    Baron, C.5    LoSeen, D.6
  • 46
    • 39749173163 scopus 로고    scopus 로고
    • Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S
    • Wardlow, B.D., Egbert, S.L., 2008. Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains. Remote Sens. Environ. 112, 1096-1116.
    • (2008) Central Great Plains. Remote Sens. Environ , vol.112 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 47
    • 34247523027 scopus 로고    scopus 로고
    • Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S
    • Wardlow, B.D., Egbert, S.L., Kastens,J.H., 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 108, 290-310.
    • (2007) Central Great Plains. Remote Sens. Environ , vol.108 , pp. 290-310
    • Wardlow, B.D.1    Egbert, S.L.2    Kastens, J.H.3
  • 48
    • 84884865375 scopus 로고    scopus 로고
    • Broad-scale monitoring of tillage practices using sequential Landsat imagery
    • Zheng, B., Campbell, J.B., Shao, Y., Wynne, R.H., 2013. Broad-scale monitoring of tillage practices using sequential Landsat imagery. Soil Sci. Soc. Am. J. 77 (5), 1755-1764.
    • (2013) Soil Sci. Soc. Am. J , vol.77 , Issue.5 , pp. 1755-1764
    • Zheng, B.1    Campbell, J.B.2    Shao, Y.3    Wynne, R.H.4
  • 49
    • 84884264508 scopus 로고    scopus 로고
    • Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery
    • Zhong, L., Gong, P., Biging, G.S., 2014. Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery. Remote Sens. Environ. 140,1-13.
    • (2014) Remote Sens. Environ , vol.140 , pp. 1-13
    • Zhong, L.1    Gong, P.2    Biging, G.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.