메뉴 건너뛰기




Volumn 97, Issue 2, 2010, Pages 208-214

Application of the relevance vector machine to canal flow prediction in the Sevier River Basin

Author keywords

Flow rate modeling; Forecasting; Irrigation canals; Supervised machine learning; Water demand

Indexed keywords

CANAL FLOWS; DATA-DRIVEN APPROACH; FLOW RATE MODELING; INPUT SET; KERNEL-BASED LEARNING; MODEL UPDATES; PREDICTION CAPABILITY; PREDICTION HORIZON; RELEVANCE VECTOR MACHINE; RIVER BASINS; SCALE PARAMETER; SUPERVISED MACHINE LEARNING; TIME OF DELIVERY; WATER DEMAND;

EID: 70449685716     PISSN: 03783774     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.agwat.2009.09.010     Document Type: Article
Times cited : (24)

References (9)
  • 3
    • 70449636064 scopus 로고    scopus 로고
    • Sevier river basin system description
    • Tech. rep, Sevier River Water Users Association
    • Berger, B., Hansen, R., Jensen, R., 2003. Sevier river basin system description. Tech. rep., Sevier River Water Users Association. http://www.sevierriver.org/sys_desc/sysdes.pdf.
    • (2003)
    • Berger, B.1    Hansen, R.2    Jensen, R.3
  • 5
    • 29944444287 scopus 로고    scopus 로고
    • Sparse Bayesian learning machine for real-time management of reservoir releases
    • Khalil A., McKee M., Kemblowski M., and Asefa T. Sparse Bayesian learning machine for real-time management of reservoir releases. Water Resources Research 41 (2005)
    • (2005) Water Resources Research , vol.41
    • Khalil, A.1    McKee, M.2    Kemblowski, M.3    Asefa, T.4
  • 9
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (2001) 211-244
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.