-
1
-
-
84871336127
-
Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells
-
Baltazar GC, Guha S, Lu W, Lim J, Boesze-Battaglia K, Laties AM, Tyagi P, Kompella UB, Mitchell CH. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLos One 7: e49635, 2012.
-
(2012)
Plos One
, vol.7
-
-
Baltazar, G.C.1
Guha, S.2
Lu, W.3
Lim, J.4
Boesze-Battaglia, K.5
Laties, A.M.6
Tyagi, P.7
Kompella, U.B.8
Mitchell, C.H.9
-
3
-
-
84863482530
-
Lysosomal function and dysfunction: Mechanism and disease
-
Boya P. Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Signal 17: 766–774, 2012.
-
(2012)
Antioxid Redox Signal
, vol.17
, pp. 766-774
-
-
Boya, P.1
-
4
-
-
54949137644
-
Lysosomal membrane permeabilization in cell death
-
Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene 27: 6434–6451, 2008.
-
(2008)
Oncogene
, vol.27
, pp. 6434-6451
-
-
Boya, P.1
Kroemer, G.2
-
5
-
-
79958768097
-
Albumin overload activates intrarenal renin-angiotensin system through protein kinase C and NADPH oxidase-dependent pathway
-
Cao W, Zhou QG, Nie J, Wang GB, Liu Y, Zhou ZM, Hou FF. Albumin overload activates intrarenal renin-angiotensin system through protein kinase C and NADPH oxidase-dependent pathway. J Hypertens 29: 1411–1421, 2011.
-
(2011)
J Hypertens
, vol.29
, pp. 1411-1421
-
-
Cao, W.1
Zhou, Q.G.2
Nie, J.3
Wang, G.B.4
Liu, Y.5
Zhou, Z.M.6
Hou, F.F.7
-
6
-
-
34250344831
-
The evolution of lysosomes in hypoxic liver parenchyma as seen with the electron microscope
-
Confer DB, Stenger RJ. The evolution of lysosomes in hypoxic liver parenchyma as seen with the electron microscope. Am J Pathol 45: 533–546, 1964.
-
(1964)
Am J Pathol
, vol.45
, pp. 533-546
-
-
Confer, D.B.1
Stenger, R.J.2
-
7
-
-
67650751080
-
Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes
-
Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Castedo M, Cidlowski JA, Ciechanover A, Cohen GM, De Laurenzi V, De Maria R, Deshmukh M, Dynlacht BD, El-Deiry WS, Flavell RA, Fulda S, Garrido C, Golstein P, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Jaattela M, Kepp O, Kimchi A, Klionsky DJ, Knight RA, Kornbluth S, Kumar S, Levine B, Lipton SA, Lugli E, Madeo F, Malomi W, Marine JC, Martin SJ, Medema JP, Mehlen P, Melino G, Moll UM, Morselli E, Nagata S, Nicholson DW, Nicotera P, Nunez G, Oren M, Penninger J, Pervaiz S, Peter ME, Piacentini M, Prehn JH, Puthalakath H, Rabinovich GA, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Scorrano L, Simon HU, Steller H, Tschopp J, Tsujimoto Y, Vandenabeele P, Vitale I, Vousden KH, Youle RJ, Yuan J, Zhivotovsky B, Kroemer G. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16: 1093–1107, 2009.
-
(2009)
Cell Death Differ
, vol.16
, pp. 1093-1107
-
-
Galluzzi, L.1
Aaronson, S.A.2
Abrams, J.3
Alnemri, E.S.4
Rews, D.W.5
Baehrecke, E.H.6
Bazan, N.G.7
Blagosklonny, M.V.8
Blomgren, K.9
Borner, C.10
Bredesen, D.E.11
Brenner, C.12
Castedo, M.13
Cidlowski, J.A.14
Ciechanover, A.15
Cohen, G.M.16
De Laurenzi, V.17
De Maria, R.18
Deshmukh, M.19
Dynlacht, B.D.20
El-Deiry, W.S.21
Flavell, R.A.22
Fulda, S.23
Garrido, C.24
Golstein, P.25
Gougeon, M.L.26
Green, D.R.27
Gronemeyer, H.28
Hajnoczky, G.29
Hardwick, J.M.30
Hengartner, M.O.31
Ichijo, H.32
Jaattela, M.33
Kepp, O.34
Kimchi, A.35
Klionsky, D.J.36
Knight, R.A.37
Kornbluth, S.38
Kumar, S.39
Levine, B.40
Lipton, S.A.41
Lugli, E.42
Madeo, F.43
Malomi, W.44
Marine, J.C.45
Martin, S.J.46
Medema, J.P.47
Mehlen, P.48
Melino, G.49
Moll, U.M.50
Morselli, E.51
Nagata, S.52
Nicholson, D.W.53
Nicotera, P.54
Nunez, G.55
Oren, M.56
Penninger, J.57
Pervaiz, S.58
Peter, M.E.59
Piacentini, M.60
Prehn, J.H.61
Puthalakath, H.62
Rabinovich, G.A.63
Rizzuto, R.64
Rodrigues, C.M.65
Rubinsztein, D.C.66
Rudel, T.67
Scorrano, L.68
Simon, H.U.69
Steller, H.70
Tschopp, J.71
Tsujimoto, Y.72
Vandenabeele, P.73
Vitale, I.74
Vousden, K.H.75
Youle, R.J.76
Yuan, J.77
Zhivotovsky, B.78
Kroemer, G.79
more..
-
8
-
-
84863984682
-
Tubulointerstitial injury and the progression of chronic kidney disease
-
Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol 27: 901–909, 2012.
-
(2012)
Pediatr Nephrol
, vol.27
, pp. 901-909
-
-
Hodgkins, K.S.1
Schnaper, H.W.2
-
9
-
-
52149105787
-
Lysosomes in apoptosis
-
Ivanova S, Repnik U, Bojic L, Petelin A, Turk V, Turk B. Lysosomes in apoptosis. Methods Enzymol 442: 183–199, 2008.
-
(2008)
Methods Enzymol
, vol.442
, pp. 183-199
-
-
Ivanova, S.1
Repnik, U.2
Bojic, L.3
Petelin, A.4
Turk, V.5
Turk, B.6
-
10
-
-
0031792845
-
Childhood membranous nephropathy, circulating antibodies to the 58-kD TIN antigen, and anti-tubular basement membrane nephritis: An 11-year follow-up
-
Ivanyi B, Haszon I, Endreffy E, Szenohradszky P, Petri IB, Kalmar T, Butkowski RJ, Charonis AS, Turi S. Childhood membranous nephropathy, circulating antibodies to the 58-kD TIN antigen, and anti-tubular basement membrane nephritis: an 11-year follow-up. Am J Kidney Dis 32: 1068–1074, 1998.
-
(1998)
Am J Kidney Dis
, vol.32
, pp. 1068-1074
-
-
Ivanyi, B.1
Haszon, I.2
Endreffy, E.3
Szenohradszky, P.4
Petri, I.B.5
Kalmar, T.6
Butkowski, R.J.7
Charonis, A.S.8
Turi, S.9
-
11
-
-
77951666702
-
Regulation of apoptosis-associated lysosomal membrane permeabilization
-
Johansson AC, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 15: 527–540, 2010.
-
(2010)
Apoptosis
, vol.15
, pp. 527-540
-
-
Johansson, A.C.1
Appelqvist, H.2
Nilsson, C.3
Kagedal, K.4
Roberg, K.5
Ollinger, K.6
-
12
-
-
0035123317
-
Tracer studies in the rat demonstrate misdirected filtration and peritubular filtrate spreading in nephrons with segmental glomerulosclerosis
-
Kriz W, Hartmann I, Hosser H, Hahnel B, Kranzlin B, Provoost A, Gretz N. Tracer studies in the rat demonstrate misdirected filtration and peritubular filtrate spreading in nephrons with segmental glomerulosclerosis. J Am Soc Nephrol 12: 496–506, 2001.
-
(2001)
J am Soc Nephrol
, vol.12
, pp. 496-506
-
-
Kriz, W.1
Hartmann, I.2
Hosser, H.3
Hahnel, B.4
Kranzlin, B.5
Provoost, A.6
Gretz, N.7
-
13
-
-
84878247505
-
Limited capacity of proximal tubular proteolysis in mice with proteinuria
-
Lee D, Gleich K, Fraser SA, Katerelos M, Mount PF, Power DA. Limited capacity of proximal tubular proteolysis in mice with proteinuria. Am J Physiol Renal Physiol 304: F1009–F1019, 2013.
-
(2013)
Am J Physiol Renal Physiol
, vol.304
, pp. F1009-F1019
-
-
Lee, D.1
Gleich, K.2
Fraser, S.A.3
Katerelos, M.4
Mount, P.F.5
Power, D.A.6
-
14
-
-
84894426170
-
Autophagy activation reduces renal tubular injury induced by urinary proteins
-
Liu WJ, Luo MN, Tan J, Chen W, Huang LZ, Yang C, Pan Q, Li B, Liu HF. Autophagy activation reduces renal tubular injury induced by urinary proteins. Autophagy 10: 243–256, 2014.
-
(2014)
Autophagy
, vol.10
, pp. 243-256
-
-
Liu, W.J.1
Luo, M.N.2
Tan, J.3
Chen, W.4
Huang, L.Z.5
Yang, C.6
Pan, Q.7
Li, B.8
Liu, H.F.9
-
15
-
-
1142275261
-
Mechanisms of tubulointerstitial injury in the kidney: Final common pathways to end-stage renal failure
-
Nangaku M. Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med 43: 9–17, 2004.
-
(2004)
Intern Med
, vol.43
, pp. 9-17
-
-
Nangaku, M.1
-
16
-
-
77951254352
-
Proteinuria and events beyond the slit
-
Nielsen R, Christensen EI. Proteinuria and events beyond the slit. Pediatr Nephrol 25: 813–822, 2010.
-
(2010)
Pediatr Nephrol
, vol.25
, pp. 813-822
-
-
Nielsen, R.1
Christensen, E.I.2
-
17
-
-
0037223288
-
Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor ɑ-induced cell death
-
Ono K, Kim SO, Han J. Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor ɑ-induced cell death. Mol Cell Biol 23: 665–676, 2003.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 665-676
-
-
Ono, K.1
Kim, S.O.2
Han, J.3
-
18
-
-
0035201812
-
Resistance to tumor necrosis factor-induced cell death mediated by PMCA4 deficiency
-
Ono K, Wang X, Han J. Resistance to tumor necrosis factor-induced cell death mediated by PMCA4 deficiency. Mol Cell Biol 21: 8276–8288, 2001.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 8276-8288
-
-
Ono, K.1
Wang, X.2
Han, J.3
-
19
-
-
82755197676
-
Lysosomes and lysosomal cathepsins in cell death
-
Repnik U, Stoka V, Turk V, Turk B. Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824: 22–33, 2012.
-
(2012)
Biochim Biophys Acta
, vol.1824
, pp. 22-33
-
-
Repnik, U.1
Stoka, V.2
Turk, V.3
Turk, B.4
-
20
-
-
69249227502
-
Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function
-
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10: 623–635, 2009.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 623-635
-
-
Saftig, P.1
Klumperman, J.2
-
21
-
-
0020973226
-
Inhibitors of lysosomal function
-
Seglen PO. Inhibitors of lysosomal function. Methods Enzymol 96: 737–764, 1983.
-
(1983)
Methods Enzymol
, vol.96
, pp. 737-764
-
-
Seglen, P.O.1
-
22
-
-
84862833325
-
Epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells induced by urinary proteins requires the activation of PKC-ɑ and βI isozymes
-
Tang R, Yang C, Tao JL, You YK, An N, Li SM, Wu HL, Liu HF. Epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells induced by urinary proteins requires the activation of PKC-ɑ and βI isozymes. Cell Biol Int 35: 953–959, 2011.
-
(2011)
Cell Biol Int
, vol.35
, pp. 953-959
-
-
Tang, R.1
Yang, C.2
Tao, J.L.3
You, Y.K.4
An, N.5
Li, S.M.6
Wu, H.L.7
Liu, H.F.8
-
23
-
-
34249889038
-
Abrogation of protein uptake through megalindeficient proximal tubules does not safeguard against tubulointerstitial injury
-
Theilig F, Kriz W, Jerichow T, Schrade P, Hahnel B, Willnow T, Le Hir M, Bachmann S. Abrogation of protein uptake through megalindeficient proximal tubules does not safeguard against tubulointerstitial injury. J Am Soc Nephrol 18: 1824–1834, 2007.
-
(2007)
J am Soc Nephrol
, vol.18
, pp. 1824-1834
-
-
Theilig, F.1
Kriz, W.2
Jerichow, T.3
Schrade, P.4
Hahnel, B.5
Willnow, T.6
Le Hir, M.7
Bachmann, S.8
-
24
-
-
0032987767
-
Proteinuria induces tubular cell turnover: A potential mechanism for tubular atrophy
-
Thomas ME, Brunskill NJ, Harris KP, Bailey E, Pringle JH, Furness PN, Walls J. Proteinuria induces tubular cell turnover: a potential mechanism for tubular atrophy. Kidney Int 55: 890–898, 1999.
-
(1999)
Kidney Int
, vol.55
, pp. 890-898
-
-
Thomas, M.E.1
Brunskill, N.J.2
Harris, K.P.3
Bailey, E.4
Pringle, J.H.5
Furness, P.N.6
Walls, J.7
-
25
-
-
84866170673
-
Understanding the mechanisms of proteinuria: Therapeutic implications
-
Toblli JE, Bevione P, Di Gennaro F, Madalena L, Cao G, Angerosa M. Understanding the mechanisms of proteinuria: therapeutic implications. Int J Nephrol 2012: 546039, 2012.
-
(2012)
Int J Nephrol
, vol.2012
-
-
Toblli, J.E.1
Bevione, P.2
Di Gennaro, F.3
Madalena, L.4
Cao, G.5
Angerosa, M.6
-
26
-
-
77049098363
-
Albumin overload induces apoptosis in renal tubular epithelial cells through a CHOP-dependent pathway
-
Wu X, He Y, Jing Y, Li K, Zhang J. Albumin overload induces apoptosis in renal tubular epithelial cells through a CHOP-dependent pathway. OMICS 14: 61–73, 2010.
-
(2010)
OMICS
, vol.14
, pp. 61-73
-
-
Wu, X.1
He, Y.2
Jing, Y.3
Li, K.4
Zhang, J.5
-
27
-
-
70450222302
-
The role of lysosomal rupture in neuronal death
-
Yamashima T, Oikawa S. The role of lysosomal rupture in neuronal death. Prog Neurobiol 89: 343–358, 2009.
-
(2009)
Prog Neurobiol
, vol.89
, pp. 343-358
-
-
Yamashima, T.1
Oikawa, S.2
-
28
-
-
0027144910
-
Svensson I. Effect of reactive oxygen species on lysosomal membrane integrity. A study on a lysosomal fraction
-
Zdolsek JM, Svensson I. Effect of reactive oxygen species on lysosomal membrane integrity. A study on a lysosomal fraction. Virchows Arch B Cell Pathol Incl Mol Pathol 64: 401–406, 1993.
-
(1993)
Virchows Arch B Cell Pathol Incl Mol Pathol
, vol.64
, pp. 401-406
-
-
Zdolsek, J.M.1
-
29
-
-
84867289163
-
()-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization
-
Zhang Y, Yang ND, Zhou F, Shen T, Duan T, Zhou J, Shi Y, Zhu XQ, Shen HM. ()-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLos One 7: e46749, 2012.
-
(2012)
Plos One
, vol.7
-
-
Zhang, Y.1
Yang, N.D.2
Zhou, F.3
Shen, T.4
Duan, T.5
Zhou, J.6
Shi, Y.7
Zhu, X.Q.8
Shen, H.M.9
-
30
-
-
1642350993
-
Cellular responses to protein overload: Key event in renal disease progression
-
Zoja C, Benigni A, Remuzzi G. Cellular responses to protein overload: key event in renal disease progression. Curr Opin Nephrol Hypertens 13: 31–37, 2004.
-
(2004)
Curr Opin Nephrol Hypertens
, vol.13
, pp. 31-37
-
-
Zoja, C.1
Benigni, A.2
Remuzzi, G.3
|