메뉴 건너뛰기




Volumn 38, Issue 11-12, 2014, Pages 2800-2818

Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization

Author keywords

Electrical discharge machining (EDM); Particle swarm optimization (PSO); Support vector machine (SVM)

Indexed keywords

ELECTRIC DISCHARGE MACHINING; PARTICLE SWARM OPTIMIZATION (PSO); RADIAL BASIS FUNCTION NETWORKS; RANDOM PROCESSES;

EID: 84900013395     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2013.10.073     Document Type: Article
Times cited : (99)

References (32)
  • 1
    • 0041888214 scopus 로고    scopus 로고
    • State of the art electrical discharge machining (EDM)
    • Ho K.H., Newman S.T. State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 2003, 43:1287-1300.
    • (2003) Int. J. Mach. Tools Manuf. , vol.43 , pp. 1287-1300
    • Ho, K.H.1    Newman, S.T.2
  • 2
    • 58149368795 scopus 로고
    • EDM future steps towards the machining of ceramics
    • Konig W., Dauw D.F., Levy G., Panten U. EDM future steps towards the machining of ceramics. Ann. CIRP 1988, 37(2):623-631.
    • (1988) Ann. CIRP , vol.37 , Issue.2 , pp. 623-631
    • Konig, W.1    Dauw, D.F.2    Levy, G.3    Panten, U.4
  • 3
    • 79953877544 scopus 로고    scopus 로고
    • Advancing EDM through fundamental insight of the process
    • Kunieda M., Lauwers B., Rajurkar K.P., Schumacher B.M. Advancing EDM through fundamental insight of the process. Ann. CIRP 2005, 54(2):599-622.
    • (2005) Ann. CIRP , vol.54 , Issue.2 , pp. 599-622
    • Kunieda, M.1    Lauwers, B.2    Rajurkar, K.P.3    Schumacher, B.M.4
  • 4
    • 33947193401 scopus 로고    scopus 로고
    • A review on current research trends in electrical discharge machining
    • 7-8
    • Abbas N.M., Solomon D.G., Bahari M.F. A review on current research trends in electrical discharge machining. Int. J. Mach. Tools Manuf. 2007, 47(7-8):1214-1228.
    • (2007) Int. J. Mach. Tools Manuf. , vol.47 , pp. 1214-1228
    • Abbas, N.M.1    Solomon, D.G.2    Bahari, M.F.3
  • 5
    • 0033117082 scopus 로고    scopus 로고
    • A thermo-electric model of material removal during electric discharge machining
    • Singh A., Ghosh A. A thermo-electric model of material removal during electric discharge machining. J. Mater. Process. Technol. 1999, 39:669-682.
    • (1999) J. Mater. Process. Technol. , vol.39 , pp. 669-682
    • Singh, A.1    Ghosh, A.2
  • 6
    • 23144435324 scopus 로고    scopus 로고
    • Artificial neural network prediction of material removal rate in electro discharge machining
    • Panda D.K., Bhoi R.K. Artificial neural network prediction of material removal rate in electro discharge machining. Mater. Manuf. Process 2005, 20:645-672.
    • (2005) Mater. Manuf. Process , vol.20 , pp. 645-672
    • Panda, D.K.1    Bhoi, R.K.2
  • 7
    • 10044227108 scopus 로고    scopus 로고
    • Modeling of surface finish in electro-discharge machining based upon statistical multi-parameter analysis
    • Petropoulos G., Vaxevanidis N.M., Pandazaras C. Modeling of surface finish in electro-discharge machining based upon statistical multi-parameter analysis. J. Mater. Process. Technol. 2004, 155-156:1247-1251.
    • (2004) J. Mater. Process. Technol. , pp. 1247-1251
    • Petropoulos, G.1    Vaxevanidis, N.M.2    Pandazaras, C.3
  • 8
    • 0035427846 scopus 로고    scopus 로고
    • Semi-empirical model of surface finish on electrical discharge machining
    • Tsai K.M., Wang P.J. Semi-empirical model of surface finish on electrical discharge machining. Int. J. Mach. Tools Manuf. 2001, 41:1455-1477.
    • (2001) Int. J. Mach. Tools Manuf. , vol.41 , pp. 1455-1477
    • Tsai, K.M.1    Wang, P.J.2
  • 9
    • 0035427810 scopus 로고    scopus 로고
    • Prediction on surface finish in electrical discharge machining based upon neural network models
    • Tsai K.M., Wang P.J. Prediction on surface finish in electrical discharge machining based upon neural network models. Int. J. Mach. Tools Manuf. 2001, 41:1385-1403.
    • (2001) Int. J. Mach. Tools Manuf. , vol.41 , pp. 1385-1403
    • Tsai, K.M.1    Wang, P.J.2
  • 10
    • 27844464394 scopus 로고
    • Theoretical models of electrical discharge machining process. I. A simple cathode erosion model
    • DiBitonto D.D., Eubank P.T., Patel M.R., Barrufet M.A. Theoretical models of electrical discharge machining process. I. A simple cathode erosion model. J. Appl. Phys. 1989, 66:4095-4103.
    • (1989) J. Appl. Phys. , vol.66 , pp. 4095-4103
    • DiBitonto, D.D.1    Eubank, P.T.2    Patel, M.R.3    Barrufet, M.A.4
  • 12
    • 52649094377 scopus 로고    scopus 로고
    • Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite
    • 1-2
    • Saha P., Singha A., Pal S.K., Saha P. Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite. Int. J. Adv. Manuf. Technol. 2008, 39(1-2):74-84.
    • (2008) Int. J. Adv. Manuf. Technol. , vol.39 , pp. 74-84
    • Saha, P.1    Singha, A.2    Pal, S.K.3    Saha, P.4
  • 13
    • 68049135843 scopus 로고    scopus 로고
    • Study of the parameters in electrical discharge machining through response surface methodology approach
    • Habib S.S. Study of the parameters in electrical discharge machining through response surface methodology approach. Appl. Math. Model. 2009, 33:4397-4407.
    • (2009) Appl. Math. Model. , vol.33 , pp. 4397-4407
    • Habib, S.S.1
  • 15
    • 84862283893 scopus 로고    scopus 로고
    • Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
    • Çaydaş U., Ekici S. Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J. Intell. Manuf. 2012, 23(3):639-650.
    • (2012) J. Intell. Manuf. , vol.23 , Issue.3 , pp. 639-650
    • Çaydaş, U.1    Ekici, S.2
  • 16
    • 67650242415 scopus 로고    scopus 로고
    • Automated intelligent manufacturing system for surface finish control in CNC milling using support vector machines
    • Ramesh R., Kumar K.S.R., Anil G. Automated intelligent manufacturing system for surface finish control in CNC milling using support vector machines. Int. J. Adv. Manuf. Technol. 2009, 42:1103-1117.
    • (2009) Int. J. Adv. Manuf. Technol. , vol.42 , pp. 1103-1117
    • Ramesh, R.1    Kumar, K.S.R.2    Anil, G.3
  • 17
    • 67650270096 scopus 로고    scopus 로고
    • Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling
    • Lela B., Bajić D., Jozić S. Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling. Int. J. Adv. Manuf. Technol. 2009, 42:1082-1088.
    • (2009) Int. J. Adv. Manuf. Technol. , vol.42 , pp. 1082-1088
    • Lela, B.1    Bajić, D.2    Jozić, S.3
  • 18
    • 78650175860 scopus 로고    scopus 로고
    • A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM
    • Zhang L., Jia Z., Wang F., Liu W. A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM. Int. J. Adv. Manuf. Technol. 2010, 51:575-586.
    • (2010) Int. J. Adv. Manuf. Technol. , vol.51 , pp. 575-586
    • Zhang, L.1    Jia, Z.2    Wang, F.3    Liu, W.4
  • 21
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Scholkopf B. A tutorial on support vector regression. Stat. Comput. 2004, 14(3):199-222.
    • (2004) Stat. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 22
    • 66449136989 scopus 로고    scopus 로고
    • Time series prediction using support vector machines: a survey
    • Sapankevych N.I., Sankar R. Time series prediction using support vector machines: a survey. IEEE Comput. Intell. Mag. 2009, 4(2):24-38.
    • (2009) IEEE Comput. Intell. Mag. , vol.4 , Issue.2 , pp. 24-38
    • Sapankevych, N.I.1    Sankar, R.2
  • 23
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu P.S., Chen S.T., Chang I.F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328:704-716.
    • (2006) J. Hydrol. , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 24
    • 23944471480 scopus 로고    scopus 로고
    • Customer demand forecasting via support vector regression analysis
    • Levis A.A., Papageorgiou L.G. Customer demand forecasting via support vector regression analysis. Chemical Engineering research and Design 2005, 83(A8):1009-1018.
    • (2005) Chemical Engineering research and Design , vol.83 , Issue.A8 , pp. 1009-1018
    • Levis, A.A.1    Papageorgiou, L.G.2
  • 25
    • 0029535737 scopus 로고
    • Particle swarm optimization
    • in: Proceedings of IEEE International Conference on Neural Networks, vol. IV, Piscataway, NJ
    • J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol. IV, Piscataway, NJ, 1995, pp. 1942-1948.
    • (1995) , pp. 1942-1948
    • Kennedy, J.1    Eberhart, R.2
  • 26
    • 84901470581 scopus 로고    scopus 로고
    • Multiobjective optimization using dynamic neighborhood particle swarm optimization
    • in: Proceedings of the 2002 Congress on Evolutionary Computation
    • X. Hu, R. Eberhart, Multiobjective optimization using dynamic neighborhood particle swarm optimization, in: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, 2002, pp. 1677-1681.
    • (2002) , vol.2 , pp. 1677-1681
    • Hu, X.1    Eberhart, R.2
  • 27
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm: explosion stability and convergence in a multi-dimensional complex space
    • Clerc M., Kennedy J. The particle swarm: explosion stability and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 2002, 6:58-73.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 28
    • 34548269905 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients
    • Tripathi P.K., Bandyopadhyay S., Pal S.K. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 2007, 177:5033-5049.
    • (2007) Inf. Sci. , vol.177 , pp. 5033-5049
    • Tripathi, P.K.1    Bandyopadhyay, S.2    Pal, S.K.3
  • 29
    • 78049529720 scopus 로고    scopus 로고
    • Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm
    • Tang Y., Wang Z., Fang J. Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm. Expert Syst. Appl. 2011, 28:2523-2535.
    • (2011) Expert Syst. Appl. , vol.28 , pp. 2523-2535
    • Tang, Y.1    Wang, Z.2    Fang, J.3
  • 31
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • Ratnaweera A., Halgamure S.K., Watson H.C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8:240-255.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , pp. 240-255
    • Ratnaweera, A.1    Halgamure, S.K.2    Watson, H.C.3
  • 32
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17:113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.