-
1
-
-
80051817418
-
Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery
-
Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32:8010-20.
-
(2011)
Biomaterials
, vol.32
, pp. 8010-8020
-
-
Guo, J.1
Gao, X.2
Su, L.3
Xia, H.4
Gu, G.5
Pang, Z.6
-
2
-
-
78650052719
-
Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior
-
Fang C, Veiseh O, Kievit F, Bhattarai N, Wang F, Stephen Z, et al. Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior. Nanomed. 2010;5:1357-69.
-
(2010)
Nanomed
, vol.5
, pp. 1357-1369
-
-
Fang, C.1
Veiseh, O.2
Kievit, F.3
Bhattarai, N.4
Wang, F.5
Stephen, Z.6
-
3
-
-
84885382493
-
The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles
-
Ding Y, Zhou YY, Chen H, Geng DD, Wu DY, Hong J, et al. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials. 2013;34:10217-27.
-
(2013)
Biomaterials
, vol.34
, pp. 10217-10227
-
-
Ding, Y.1
Zhou, Y.Y.2
Chen, H.3
Geng, D.D.4
Wu, D.Y.5
Hong, J.6
-
4
-
-
84862850519
-
Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects
-
Kim JE, Shin JY, Cho MH. Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol. 2012;86:685-700.
-
(2012)
Arch Toxicol
, vol.86
, pp. 685-700
-
-
Kim, J.E.1
Shin, J.Y.2
Cho, M.H.3
-
7
-
-
84887896318
-
Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy
-
Dutz S, Hergt R. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia. 2013;29:790-800.
-
(2013)
Int J Hyperthermia
, vol.29
, pp. 790-800
-
-
Dutz, S.1
Hergt, R.2
-
8
-
-
33749507793
-
The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia
-
Glöckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W. The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J Phys Condens Matter. 2006;18:S2935-49.
-
(2006)
J Phys Condens Matter
, vol.18
, pp. S2935-S2949
-
-
Glöckl, G.1
Hergt, R.2
Zeisberger, M.3
Dutz, S.4
Nagel, S.5
Weitschies, W.6
-
9
-
-
84887924069
-
In vivo applications of magnetic nanoparticle hyperthermia
-
Hilger I. In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia. 2013;29:828-34.
-
(2013)
Int J Hyperthermia
, vol.29
, pp. 828-834
-
-
Hilger, I.1
-
10
-
-
82455206257
-
Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice
-
Kettering M, Richter H, Wiekhorst F, Bremer-Streck S, Trahms L, Kaiser WA, et al. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice. Nanotechnology. 2011;22:505102.
-
(2011)
Nanotechnology
, vol.22
, pp. 505102
-
-
Kettering, M.1
Richter, H.2
Wiekhorst, F.3
Bremer-Streck, S.4
Trahms, L.5
Kaiser, W.A.6
-
11
-
-
80052723049
-
Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model
-
Hu R, Ma S, Li H, Ke X, Wang G, Wei D, et al. Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model. Oncol Lett. 2011;2:1161-4.
-
(2011)
Oncol Lett
, vol.2
, pp. 1161-1164
-
-
Hu, R.1
Ma, S.2
Li, H.3
Ke, X.4
Wang, G.5
Wei, D.6
-
12
-
-
84880446225
-
Intravenous magnetic nanoparticle cancer hyperthermia
-
Huang HS, Hainfeld JF. Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomedicine. 2013;8:2521-32.
-
(2013)
Int J Nanomedicine
, vol.8
, pp. 2521-2532
-
-
Huang, H.S.1
Hainfeld, J.F.2
-
13
-
-
84902345377
-
Multifunctionalization of magnetic nanoparticles for controlled drug release: A general approach
-
Latorre A, Couleaud P, Aires A, Cortajarena AL, Somoza A. Multifunctionalization of magnetic nanoparticles for controlled drug release: A general approach. Eur J Med Chem. 2014;82:355-62.
-
(2014)
Eur J Med Chem
, vol.82
, pp. 355-362
-
-
Latorre, A.1
Couleaud, P.2
Aires, A.3
Cortajarena, A.L.4
Somoza, A.5
-
14
-
-
84870614898
-
Double-effector nanoparticles: a synergistic approach to apoptotic hyperthermia
-
Yoo D, Jeong H, Preihs C, Choi JS, Shin TH, Sessler JL, et al. Double-effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angew Chem Int Ed Engl. 2012;51:12482-5.
-
(2012)
Angew Chem Int Ed Engl
, vol.51
, pp. 12482-12485
-
-
Yoo, D.1
Jeong, H.2
Preihs, C.3
Choi, J.S.4
Shin, T.H.5
Sessler, J.L.6
-
15
-
-
49449117054
-
Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin
-
Destouches D, El Khoury D, Hamma-Kourbali Y, Krust B, Albanese P, Katsoris P, et al. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. Plos One. 2008;3:E2518.
-
(2008)
Plos One
, vol.3
, pp. E2518
-
-
Destouches, D.1
Khoury, D.2
Hamma-Kourbali, Y.3
Krust, B.4
Albanese, P.5
Katsoris, P.6
-
16
-
-
84871547567
-
Multivalent pseudopeptides targeting cell surface nucleoproteins inhibit cancer cell invasion through tissue inhibitor of metalloproteinases 3 (TIMP-3) release
-
Destouches D, Huet E, Sader M, Frechault S, Carpentier G, Ayoul F, et al. Multivalent pseudopeptides targeting cell surface nucleoproteins inhibit cancer cell invasion through tissue inhibitor of metalloproteinases 3 (TIMP-3) release. J Biol Chem. 2012;287:43685-93.
-
(2012)
J Biol Chem
, vol.287
, pp. 43685-43693
-
-
Destouches, D.1
Huet, E.2
Sader, M.3
Frechault, S.4
Carpentier, G.5
Ayoul, F.6
-
17
-
-
79960989873
-
Targeting surface nucleolin with multivalent HB-19 and related Nucant pseudopeptides results in distinct inhibitory mechanisms depending on the malignant tumor cell type
-
Krust B, El Khoury D, Nondier I, Soundaramourty C, Hovanessian AG. Targeting surface nucleolin with multivalent HB-19 and related Nucant pseudopeptides results in distinct inhibitory mechanisms depending on the malignant tumor cell type. BMC Cancer. 2011;11:333.
-
(2011)
BMC Cancer
, vol.11
, pp. 333
-
-
Krust, B.1
Khoury, D.2
Nondier, I.3
Soundaramourty, C.4
Hovanessian, A.G.5
-
18
-
-
79955503446
-
A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins
-
Destouches D, Page N, Hamma-Kourbali Y, Machi V, Chaloin O, Frechault S, et al. A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins. Cancer Res. 2011;71:3296-305.
-
(2011)
Cancer Res
, vol.71
, pp. 3296-3305
-
-
Destouches, D.1
Page, N.2
Hamma-Kourbali, Y.3
Machi, V.4
Chaloin, O.5
Frechault, S.6
-
19
-
-
84885190531
-
Magnetic field triggered drug release from polymersomes for cancer therapeutics
-
Oliveira H, Perez-Andres E, Thevenot J, Sandre O, Berra E, Lecommandoux S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release. 2013;169:165-70.
-
(2013)
J Control Release
, vol.169
, pp. 165-170
-
-
Oliveira, H.1
Perez-Andres, E.2
Thevenot, J.3
Sandre, O.4
Berra, E.5
Lecommandoux, S.6
-
20
-
-
84862225605
-
Synthesis, characterization, cellular uptake and cytotoxicity of a multifunctional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells
-
Anirudhan TS, Sandeep S. Synthesis, characterization, cellular uptake and cytotoxicity of a multifunctional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J Mater Chem. 2012;22:12888-99.
-
(2012)
J Mater Chem
, vol.22
, pp. 12888-12899
-
-
Anirudhan, T.S.1
Sandeep, S.2
-
21
-
-
84855927254
-
Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting
-
Kaaki K, Herve-Aubert K, Chiper M, Shkilnyy A, Souce M, Benoit R, et al. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir. 2012;28:1496-505.
-
(2012)
Langmuir
, vol.28
, pp. 1496-1505
-
-
Kaaki, K.1
Herve-Aubert, K.2
Chiper, M.3
Shkilnyy, A.4
Souce, M.5
Benoit, R.6
-
22
-
-
84877938962
-
Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy
-
Li L, ten Hagen TL, Hossann M, Suss R, van Rhoon GC, Eggermont AM, et al. Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J Control Release. 2013;168:142-50.
-
(2013)
J Control Release
, vol.168
, pp. 142-150
-
-
Li, L.1
Hagen, T.L.2
Hossann, M.3
Suss, R.4
Rhoon, G.C.5
Eggermont, A.M.6
-
23
-
-
77954393305
-
Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours
-
Yarmolenko PS, Zhao Y, Landon C, Spasojevic I, Yuan F, Needham D, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia. 2010;26:485-98.
-
(2010)
Int J Hyperthermia
, vol.26
, pp. 485-498
-
-
Yarmolenko, P.S.1
Zhao, Y.2
Landon, C.3
Spasojevic, I.4
Yuan, F.5
Needham, D.6
-
24
-
-
34548524214
-
Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response
-
Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response. Acta Biomater. 2007;3:838-50.
-
(2007)
Acta Biomater
, vol.3
, pp. 838-850
-
-
Zhang, J.1
Misra, R.D.K.2
-
25
-
-
78049359717
-
Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release
-
Chang BS, Guo J, Liu CY, Qian J, Yang WL. Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem. 2010;20:9941-7.
-
(2010)
J Mater Chem
, vol.20
, pp. 9941-9947
-
-
Chang, B.S.1
Guo, J.2
Liu, C.Y.3
Qian, J.4
Yang, W.L.5
-
26
-
-
0015490926
-
Preparing magnetic fluids by a peptizing method
-
US Bureau of Mines, Tech Prog Rep 59
-
Reimers GW, Khalafalla SE. Preparing magnetic fluids by a peptizing method. In: US Bureau of Mines, Tech Prog Rep 59. 1972.
-
(1972)
-
-
Reimers, G.W.1
Khalafalla, S.E.2
-
27
-
-
84870429733
-
Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications
-
Salas G, Casado C, Teran FJ, Miranda R, Serna CJ, Morales MP. Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J Mater Chem. 2012;22:21065-75.
-
(2012)
J Mater Chem
, vol.22
, pp. 21065-21075
-
-
Salas, G.1
Casado, C.2
Teran, F.J.3
Miranda, R.4
Serna, C.J.5
Morales, M.P.6
-
28
-
-
84923109166
-
High Therapeutic Efficiency of Magnetic Hyperthermia in Xenograft Models Achieved with Moderate Temperature Dosages in the Tumor Area
-
Kossatz S, Ludwig R, Dahring H, Ettelt V, Rimkus G, Marciello M, et al. High Therapeutic Efficiency of Magnetic Hyperthermia in Xenograft Models Achieved with Moderate Temperature Dosages in the Tumor Area. Pharm Res. 2014;31:3274-88.
-
(2014)
Pharm Res
, vol.31
, pp. 3274-3288
-
-
Kossatz, S.1
Ludwig, R.2
Dahring, H.3
Ettelt, V.4
Rimkus, G.5
Marciello, M.6
-
29
-
-
84871839877
-
Multiparametric Toxicity Evaluation of SPIONs by High Content Screening Technique: Identification of Biocompatible Multifunctional Nanoparticles for Nanomedicine
-
Prina-Mello A, Crosbie-Staunton K, Salas G, Morales MD, Volkov Y. Multiparametric Toxicity Evaluation of SPIONs by High Content Screening Technique: Identification of Biocompatible Multifunctional Nanoparticles for Nanomedicine. IEEE Trans Magn. 2013;49:377-82.
-
(2013)
IEEE Trans Magn
, vol.49
, pp. 377-382
-
-
Prina-Mello, A.1
Crosbie-Staunton, K.2
Salas, G.3
Morales, M.D.4
Volkov, Y.5
-
30
-
-
0035001145
-
Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity
-
Gonzalez RJ, Tarloff JB. Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol In Vitro. 2001;15:257-9.
-
(2001)
Toxicol In Vitro
, vol.15
, pp. 257-259
-
-
Gonzalez, R.J.1
Tarloff, J.B.2
-
32
-
-
64249160994
-
Suitability of commercial colloids for magnetic hyperthermia
-
Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA. Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater. 2009;321:1509-13.
-
(2009)
J Magn Magn Mater
, vol.321
, pp. 1509-1513
-
-
Kallumadil, M.1
Tada, M.2
Nakagawa, T.3
Abe, M.4
Southern, P.5
Pankhurst, Q.A.6
-
33
-
-
84874393739
-
Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles
-
Cervadoro A, Giverso C, Pande R, Sarangi S, Preziosi L, Wosik J, et al. Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. Plos One. 2013;8:e57332.
-
(2013)
Plos One
, vol.8
, pp. e57332
-
-
Cervadoro, A.1
Giverso, C.2
Pande, R.3
Sarangi, S.4
Preziosi, L.5
Wosik, J.6
-
34
-
-
0032158410
-
Physical limits of hyperthermia using magnetite fine particles
-
Hergt R, Andra W, d'Ambly CG, Hilger I, Kaiser WA, Richter U, et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn. 1998;34:3745-54.
-
(1998)
IEEE Trans Magn
, vol.34
, pp. 3745-3754
-
-
Hergt, R.1
Andra, W.2
d'Ambly, C.G.3
Hilger, I.4
Kaiser, W.A.5
Richter, U.6
-
35
-
-
79957846860
-
Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties
-
Dutz S, Kettering M, Hilger I, Muller R, Zeisberger M. Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties. Nanotechnology. 2011;22:265102.
-
(2011)
Nanotechnology
, vol.22
, pp. 265102
-
-
Dutz, S.1
Kettering, M.2
Hilger, I.3
Muller, R.4
Zeisberger, M.5
-
36
-
-
76149087494
-
Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies
-
Richter H, Kettering M, Wiekhorst F, Steinhoff U, Hilger I, Trahms L. Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies. Phys Med Biol. 2010;55:623-33.
-
(2010)
Phys Med Biol
, vol.55
, pp. 623-633
-
-
Richter, H.1
Kettering, M.2
Wiekhorst, F.3
Steinhoff, U.4
Hilger, I.5
Trahms, L.6
-
37
-
-
84877277605
-
Preparing magnetic fluids by a peptizing method
-
US Bureau of Mines, Tech Prog Rep 59
-
Elsherbini AAM, El-Shahawy A. Effect of SPIO nanoparticle concentrations on temperature changes for hyperthermia via MRI. J Nanomater. 2013: 467878
-
(1972)
-
-
Reimers, G.W.1
Khalafalla, S.E.2
-
38
-
-
0036172369
-
Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery
-
Goldberg EP, Hadba AR, Almond BA, Marotta JS. Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J Pharm Pharmacol. 2002;54:159-80.
-
(2002)
J Pharm Pharmacol
, vol.54
, pp. 159-180
-
-
Goldberg, E.P.1
Hadba, A.R.2
Almond, B.A.3
Marotta, J.S.4
-
39
-
-
79952117443
-
Pharmacokinetic parameters and tissue distribution of magnetic Fe(3)O(4) nanoparticles in mice
-
Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, et al. Pharmacokinetic parameters and tissue distribution of magnetic Fe(3)O(4) nanoparticles in mice. Int J Nanomedicine. 2010;5:861-6.
-
(2010)
Int J Nanomedicine
, vol.5
, pp. 861-866
-
-
Wang, J.1
Chen, Y.2
Chen, B.3
Ding, J.4
Xia, G.5
Gao, C.6
-
40
-
-
84882267305
-
Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment
-
Yallapu MM, Ebeling MC, Khan S, Sundram V, Chauhan N, Gupta BK, et al. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol Cancer Ther. 2013;12:1471-80.
-
(2013)
Mol Cancer Ther
, vol.12
, pp. 1471-1480
-
-
Yallapu, M.M.1
Ebeling, M.C.2
Khan, S.3
Sundram, V.4
Chauhan, N.5
Gupta, B.K.6
|