메뉴 건너뛰기




Volumn 9783319038018, Issue , 2014, Pages 39-79

Medical Diagnosis by using machine learning techniques

Author keywords

[No Author keywords available]

Indexed keywords

DIAGNOSIS; LEARNING SYSTEMS; MACHINE LEARNING;

EID: 84930385259     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-319-03801-8_3     Document Type: Chapter
Times cited : (4)

References (54)
  • 2
    • 4644293749 scopus 로고    scopus 로고
    • A comparison of selection schemes used in evolutionary algorithms
    • T. Blickle, L. Thiele, A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 4(4), 361-394 (1996).
    • (1996) Evol. Comput. , vol.4 , Issue.4 , pp. 361-394
    • Blickle, T.1    Thiele, L.2
  • 3
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273-297 (1995).
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 4
    • 79960940340 scopus 로고
    • Shanghai Scientific and Technology Press, Shanghai
    • T.T. Deng, Diagnostics of TCM (Shanghai Scientific and Technology Press, Shanghai, 1984).
    • (1984) Diagnostics of TCM
    • Deng, T.T.1
  • 5
    • 84863681723 scopus 로고    scopus 로고
    • People's Medical Publishing House, Beijing
    • T.T. Deng, Practical TCM Diagnostics (People's Medical Publishing House, Beijing, 2004).
    • (2004) Practical TCM Diagnostics
    • Deng, T.T.1
  • 7
  • 8
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains. Pattern Recognit. 43(1), 5-13 (2010).
    • (2010) Pattern Recognit , vol.43 , Issue.1 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 9
    • 77954684244 scopus 로고    scopus 로고
    • Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning
    • L. Guo-Ping, L. Guo-Zheng, W. Ya-Lei, W. Yi-Qin, Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning, BMC Complementary and Alternative Medicine, 10, 37 (2010).
    • (2010) BMC Complementary and Alternative Medicine , vol.10 , pp. 37
    • Guo-Ping, L.1    Guo-Zheng, L.2    Ya-Lei, W.3    Yi-Qin, W.4
  • 10
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182 (2003).
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 11
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie, R. Tibshirani, Classification by pairwise coupling. Ann. Stat. 26(2), 451-471 (1998).
    • (1998) Ann. Stat. , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 12
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • H. He, E.A. Garcia, Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263- 1284 (2009).
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 13
    • 0000656711 scopus 로고
    • PLS regression and statistical models
    • I.S. Helland, PLS regression and statistical models. Scand. J. Stat. 17, 97-114 (1990).
    • (1990) Scand. J. Stat. , vol.17 , pp. 97-114
    • Helland, I.S.1
  • 14
    • 34248330400 scopus 로고    scopus 로고
    • Data mining and predictive modeling of biomolecular network from biomedical literature databases
    • X.H. Hu, D. Wu, Data mining and predictive modeling of biomolecular network from biomedical literature databases. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 251-263 (2007).
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.4 , pp. 251-263
    • Hu, X.H.1    Wu, D.2
  • 17
    • 63149119630 scopus 로고    scopus 로고
    • How valuable is medical social media data? Content analysis of the medical web
    • D. Kerstin, N. Wolfgang, How valuable is medical social media data? Content analysis of the medical web. Inform. Sci. 179, 1870-1880 (2009).
    • (2009) Inform. Sci. , vol.179 , pp. 1870-1880
    • Kerstin, D.1    Wolfgang, N.2
  • 18
    • 77958048739 scopus 로고    scopus 로고
    • Embedded feature selection for multi-label learning
    • in Chinese
    • G. Lei, L. Guo-Zheng, Y. Ming-Yu, Embedded feature selection for multi-label learning. J. Nanjing Univ. (Nat. Sci.) 45(5), 671-676 (2009) (in Chinese).
    • (2009) J. Nanjing Univ. (Nat. Sci.) , vol.45 , Issue.5 , pp. 671-676
    • Lei, G.1    Guo-Zheng, L.2    Ming-Yu, Y.3
  • 19
    • 52249114284 scopus 로고    scopus 로고
    • Selecting subsets of newly extracted features from PCA and PLS in microarray data analysis
    • G.-Z. Li, H.-L. Bu, M.Q. Yang, X.-Q. Zeng, J.Y. Yang, Selecting subsets of newly extracted features from PCA and PLS in microarray data analysis. BMC Genomics 9(S2), S24 (2008).
    • (2008) BMC Genomics , vol.9 , Issue.S2 , pp. S24
    • Li, G.-Z.1    Bu, H.-L.2    Yang, M.Q.3    Zeng, X.-Q.4    Yang, J.Y.5
  • 20
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • H.T. Lin, C.J. Lin, R.C. Weng, A note on Platt's probabilistic outputs for support vector machines. Mach. Learn. 68(3), 267-276 (2007).
    • (2007) Mach. Learn. , vol.68 , Issue.3 , pp. 267-276
    • Lin, H.T.1    Lin, C.J.2    Weng, R.C.3
  • 21
    • 77954684244 scopus 로고    scopus 로고
    • Modeling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning
    • G.P. Liu, G.Z. Li, Y.L. Wang, Y.Q. Wang, Modeling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning. BMC Complement. Altern. Med. 10, 4-37 (2010).
    • (2010) BMC Complement. Altern. Med. , vol.10 , pp. 4-37
    • Liu, G.P.1    Li, G.Z.2    Wang, Y.L.3    Wang, Y.Q.4
  • 22
    • 78650178723 scopus 로고    scopus 로고
    • Metabonomic study on 'Kidney-Yang Deficiency syndrome' and intervention effects of Rhizoma Drynariae extracts in rats using ultra performance liquid chromatography coupled with mass spectrometry
    • X.M. Lu, Z.L. Xiong, J.J. Li, S.N. Zheng, T.G. Huo, F.M. Li, Metabonomic study on 'Kidney-Yang Deficiency syndrome' and intervention effects of Rhizoma Drynariae extracts in rats using ultra performance liquid chromatography coupled with mass spectrometry. Talanta 15, 700-708 (2011).
    • (2011) Talanta , vol.15 , pp. 700-708
    • Lu, X.M.1    Xiong, Z.L.2    Li, J.J.3    Zheng, S.N.4    Huo, T.G.5    Li, F.M.6
  • 23
    • 0000513303 scopus 로고
    • Principled architecture selection for neural networks: Application to corporate bond rating prediction
    • ed. by J.E. Moody, S.J. Hanson, R.P. Lippmann (Morgan Kauffmann, San Mateo CA, USA
    • J. Moody, J. Utans, Principled architecture selection for neural networks: Application to corporate bond rating prediction, in Neural Information Processing Systems 4, ed. by J.E. Moody, S.J. Hanson, R.P. Lippmann (Morgan Kauffmann, San Mateo CA, USA, 1992), pp. 683-690.
    • (1992) Neural Information Processing Systems , vol.4 , pp. 683-690
    • Moody, J.1    Utans, J.2
  • 24
    • 0036886878 scopus 로고    scopus 로고
    • Calculating the expected loss of diversity of selection schemes
    • T. Motoki, Calculating the expected loss of diversity of selection schemes. Evol. Comput. 10(4), 397-422 (2002).
    • (2002) Evol. Comput. , vol.10 , Issue.4 , pp. 397-422
    • Motoki, T.1
  • 25
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max- dependency, max-relevance, and min-redundancy
    • H.C. Peng, F. Long, C. Ding, Feature selection based on mutual information: criteria of max- dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 8, 1226-1238 (2005).
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.8 , pp. 1226-1238
    • Peng, H.C.1    Long, F.2    Ding, C.3
  • 26
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press, Cambridge, MA, USA
    • J.C. Platt, Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. in Advances in large margin classifiers (MIT Press, Cambridge, MA, USA 1999), pp. 61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 28
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovicov, J. Kittler et al., Floating search methods in feature selection. Pattern Recognit. Lett. 15(11), 1119-1125 (1994).
    • (1994) Pattern Recognit. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicov, J.2    Kittler, J.3
  • 29
    • 77953688323 scopus 로고    scopus 로고
    • An asymmetric classifier based on partial least squares
    • Elsevier
    • H.N. Qu, G.Z. Li, W.S. Xu, An asymmetric classifier based on partial least squares. Pattern Recognit. 43(10), 3448-3457 (2010). Elsevier.
    • (2010) Pattern Recognit. , vol.43 , Issue.10 , pp. 3448-3457
    • Qu, H.N.1    Li, G.Z.2    Xu, W.S.3
  • 31
    • 31144448615 scopus 로고    scopus 로고
    • Using simulated annealing to optimize feature selection problem in marketing applications
    • M. Ronen, Z. Jacob, Using simulated annealing to optimize feature selection problem in marketing applications. Eur. J. Oper. Res. 171, 842-858 (2006).
    • (2006) Eur. J. Oper. Res. , vol.171 , pp. 842-858
    • Ronen, M.1    Jacob, Z.2
  • 32
    • 0038343934 scopus 로고    scopus 로고
    • Information fusion in biometrics
    • A. Ross, A. Jain, Information fusion in biometrics. Pattern Recognit. Lett. 24, 2115-2125 (2003).
    • (2003) Pattern Recognit. Lett. , vol.24 , pp. 2115-2125
    • Ross, A.1    Jain, A.2
  • 34
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R.E. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297-336 (1999).
    • (1999) Mach. Learn. , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 35
    • 84878267102 scopus 로고    scopus 로고
    • Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine
    • 13
    • H. Shao, G.Z. Li, G.P. Liu, Y. Wang, Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine. Sci. China Info. Sci. 56, 052118(13) (2011) (DOI: 10.1007/s11432-011-4406-5).
    • (2011) Sci. China Info. Sci. , vol.56 , pp. 052118
    • Shao, H.1    Li, G.Z.2    Liu, G.P.3    Wang, Y.4
  • 38
    • 79960966063 scopus 로고    scopus 로고
    • Chinese Medicine Science and Technology Press, Beijing
    • Y.Q. Wang, Diagnostics of TCM (Chinese Medicine Science and Technology Press, Beijing, 2004).
    • (2004) Diagnostics of TCM
    • Wang, Y.Q.1
  • 40
    • 77950609778 scopus 로고    scopus 로고
    • Support vector machine (SVM) and traditional Chinese medicine: Syndrome factors based an SVM from coronary heart disease treated by prominent traditional Chinese medicine doctors
    • Tianjian, ed. by H.Y. Wang, K.S. Low, K.X. Wei, J.Q. Sun (IEEE Computer Society, Los Alamitos
    • J. Wang, Q.Y. He, K.W. Yao, W. Rong, Y.W. Xing, Z. Yue, Support vector machine (SVM) and traditional Chinese medicine: Syndrome factors based an SVM from coronary heart disease treated by prominent traditional Chinese medicine doctors, in Fifth International Conference on Natural Computation: 14-16 August 2009; Tianjian, ed. by H.Y. Wang, K.S. Low, K.X. Wei, J.Q. Sun (IEEE Computer Society, Los Alamitos, 2009a), pp. 176-180.
    • (2009) Fifth International Conference on Natural Computation: 14-16 August 2009 , pp. 176-180
    • Wang, J.1    He, Q.Y.2    Yao, K.W.3    Rong, W.4    Xing, Y.W.5    Yue, Z.6
  • 43
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • J. Yang, V. Honavar, Feature subset selection using a genetic algorithm. IEEE Intell. Syst. Appl. 13, 44-49 (1998).
    • (1998) IEEE Intell. Syst. Appl. , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 46
  • 47
    • 63049083722 scopus 로고    scopus 로고
    • Irrelevant gene elimination for partial least squares based dimension reduction by using feature probes
    • Inderscience
    • X.-Q. Zeng, G.-Z. Li, G.-F. Wu, J.Y. Yang, M.Q. Yang, Irrelevant gene elimination for partial least squares based dimension reduction by using feature probes. Int. J. Data Min. Bioinform. 3(1), 85-103 (2009). Inderscience.
    • (2009) Int. J. Data Min. Bioinform. , vol.3 , Issue.1 , pp. 85-103
    • Zeng, X.-Q.1    Li, G.-Z.2    Wu, G.-F.3    Yang, J.Y.4    Yang, M.Q.5
  • 48
    • 85045891680 scopus 로고    scopus 로고
    • Grigorios Tsoumakas, Ioannis Katakis multi-label classification: An overview
    • MLA, July-September 2007
    • M. Zhang, MLA 2010. Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification: An Overview. International Journal of Data Warehousing & Mining, 3(3), 1-13, July-September 2007.
    • (2010) International Journal of Data Warehousing & Mining , vol.3 , Issue.3 , pp. 1-13
    • Zhang, M.1
  • 49
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • M.L. Zhang, Z.H. Zhou, Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338-1351 (2006).
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 50
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M.L. Zhang, Z.H. Zhou, ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 40(7), 2038-2048 (2007).
    • (2007) Pattern Recognit , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2
  • 51
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • M.L. Zhang, J.M. Pena, V. Robles et al., Feature selection for multi-label naive Bayes classification. Inform. Sci. 179(19), 3218-3229 (2009).
    • (2009) Inform. Sci. , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.L.1    Pena, J.M.2    Robles, V.3
  • 53
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Z.H. Zhou, X.Y. Liu, Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63-77 (2006).
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.H.1    Liu, X.Y.2
  • 54
    • 77951641206 scopus 로고    scopus 로고
    • Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support
    • X. Zhou, S. Chen, B. Liu, R. Zhang, Y. Wang, P. Li, Y. Guo, Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support. Artif. Intell. Med. 48, 139-152 (2010).
    • (2010) Artif. Intell. Med. , vol.48 , pp. 139-152
    • Zhou, X.1    Chen, S.2    Liu, B.3    Zhang, R.4    Wang, Y.5    Li, P.6    Guo, Y.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.