메뉴 건너뛰기




Volumn 56, Issue 5, 2013, Pages 1-13

Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine

Author keywords

coronary heart disease; feature selection; high dimensionality; inquiry of traditional Chinese medicine; multi label learning

Indexed keywords

CORONARY HEART DISEASE; DIMENSION REDUCTION ALGORITHM; EMBEDDED FEATURE SELECTIONS; GENERALIZATION PERFORMANCE; HIGH DIMENSIONALITY; MULTI-LABEL LEARNING; TRADITIONAL CHINESE MEDICINE; TRADITIONAL CHINESE MEDICINE (TCM) DIAGNOSIS;

EID: 84878267102     PISSN: 1674733X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11432-011-4406-5     Document Type: Article
Times cited : (54)

References (22)
  • 1
    • 84894420067 scopus 로고    scopus 로고
    • Data mining techniques and their application in TCM study (in Chinese)
    • Tian L, Yan Y J, Zhu J G. Data mining techniques and their application in TCM study (in Chinese). Chinese J Basic Med Trad Chin Med, 2005, 11: 710-712.
    • (2005) Chinese J Basic Med Trad Chin Med , vol.11 , pp. 710-712
    • Tian, L.1    Yan, Y.J.2    Zhu, J.G.3
  • 3
    • 78049346655 scopus 로고    scopus 로고
    • Zhang Y, Zhou Z H. Multi-label dimensionality reduction via dependence maximization. ACM Trans Knowl Discov Data, 2010, 4(3): Article No. 14.
    • (2010) ACM Trans Knowl Discov Data , vol.4 , Issue.3
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res, 2003, 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 7
    • 77958048739 scopus 로고    scopus 로고
    • Embedded feature selection for multi-label learning (in Chinese)
    • Ge L, Li G Z, You M Y. Embedded feature selection for multi-label learning (in Chinese). J Nanjing Univ (Nat Sci), 2009, 45: 671-676.
    • (2009) J Nanjing Univ (Nat Sci) , vol.45 , pp. 671-676
    • Ge, L.1    Li, G.Z.2    You, M.Y.3
  • 8
    • 0000513303 scopus 로고
    • Principled architecture selection for neural networks: Application to corporate bond rating prediction
    • J. E. Moody, S. J. Hanson, and P. R. Lippmann (Eds.), San Fransisco, CA: Morgan Kaufmann Publishers, Inc
    • Moody J, Utans J. Principled architecture selection for neural networks: Application to corporate bond rating prediction. In: Moody J E, Hanson S J, Lippmann P R, eds. Neural Information Processing Systems 4. San Fransisco, CA: Morgan Kaufmann Publishers, Inc, 1992. 683-690.
    • (1992) Neural Information Processing Systems 4 , pp. 683-690
    • Moody, J.1    Utans, J.2
  • 9
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • Zhang M L, Pena J M, Robles V, et al. Feature selection for multi-label naive Bayes classification. Inf Sci, 2009, 179: 3218-3229.
    • (2009) Inf Sci , vol.179 , pp. 3218-3229
    • Zhang, M.L.1    Pena, J.M.2    Robles, V.3
  • 10
    • 77952269818 scopus 로고    scopus 로고
    • An investigation into regularity of syndrome classification for chronic atrophic gastritis based on structural equation model (in Chinese)
    • Li G C, Li C T, Huang LP, et al. An investigation into regularity of syndrome classification for chronic atrophic gastritis based on structural equation model (in Chinese). J Nanjing Univ Trad Chin Med, 2006, 22: 217-220.
    • (2006) J Nanjing Univ Trad Chin Med , vol.22 , pp. 217-220
    • Li, G.C.1    Li, C.T.2    Huang, L.P.3
  • 11
    • 78049407943 scopus 로고    scopus 로고
    • A quantitative diagnostic method based on data-mining approach in TCM (in Chinese)
    • Wang X W, Qu H B, Wang J. A quantitative diagnostic method based on data-mining approach in TCM (in Chinese). J Beijing Univ Trad Chin Med, 2005, 28: 4-7.
    • (2005) J Beijing Univ Trad Chin Med , vol.28 , pp. 4-7
    • Wang, X.W.1    Qu, H.B.2    Wang, J.3
  • 12
    • 77954684244 scopus 로고    scopus 로고
    • Modeling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning
    • Liu G P, Li G Z, Wang Y L, et al. Modeling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning. BMC Complem Altern Med, 2010, 10: 37.
    • (2010) BMC Complem Altern Med , vol.10 , pp. 37
    • Liu, G.P.1    Li, G.Z.2    Wang, Y.L.3
  • 13
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • Gheyas I A, Smith L S. Feature subset selection in large dimensionality domains. Patt Recogn, 2010, 43: 5-13.
    • (2010) Patt Recogn , vol.43 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 14
    • 4644293749 scopus 로고    scopus 로고
    • A comparison of selection schemes used in evolutionary algorithms
    • Blickle T, Thiele L. A comparison of selection schemes used in evolutionary algorithms. Evolut Comput, 1996, 4: 361-394.
    • (1996) Evolut Comput , vol.4 , pp. 361-394
    • Blickle, T.1    Thiele, L.2
  • 15
    • 0036886878 scopus 로고    scopus 로고
    • Calculating the expected loss of diversity of selection schemes
    • Motoki T. Calculating the expected loss of diversity of selection schemes. Evolut Comput, 2002, 10: 397-422.
    • (2002) Evolut Comput , vol.10 , pp. 397-422
    • Motoki, T.1
  • 17
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang M L, Zhou Z H. ML-KNN: A lazy learning approach to multi-label learning. Patt Recog, 2007, 40: 2038-2048.
    • (2007) Patt Recog , vol.40 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2
  • 18
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Zhang M L, Zhou Z H. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans Knowl Data Eng, 2006, 18: 1338-1351.
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 19
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Elisseeff A, Weston J. A kernel method for multi-labelled classification. Adv Neur Inf Process Syst, 2002, 14: 681-687.
    • (2002) Adv Neur Inf Process Syst , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 20
    • 31144448615 scopus 로고    scopus 로고
    • Using simulated annealing to optimize feature selection problem in marketing applications
    • Ronen M, Jacob Z. Using simulated annealing to optimize feature selection problem in marketing applications. Europ J Oper Res, 2006, 171: 842-858.
    • (2006) Europ J Oper Res , vol.171 , pp. 842-858
    • Ronen, M.1    Jacob, Z.2
  • 21
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang J, Honavar V. Feature subset selection using a genetic algorithm. IEEE Intell Syst Appl, 1998, 13: 44-49.
    • (1998) IEEE Intell Syst Appl , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 22
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • Pudil P, Novovicov J, Kittler J, et al. Floating search methods in feature selection. Patt Recog Lett, 1994, 15: 1119-1125.
    • (1994) Patt Recog Lett , vol.15 , pp. 1119-1125
    • Pudil, P.1    Novovicov, J.2    Kittler, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.