메뉴 건너뛰기




Volumn 62, Issue 7, 2015, Pages 4336-4343

Mixture Bayesian Regularization of PCR Model and Soft Sensing Application

Author keywords

Bayesian regularization; Mixture model; Principal component regression (PCR); Probabilistic model; Soft sensor

Indexed keywords

ALGORITHMS; EQUIVALENCE CLASSES; IMAGE SEGMENTATION; MAXIMUM PRINCIPLE; MIXTURES;

EID: 84930227115     PISSN: 02780046     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIE.2014.2385042     Document Type: Article
Times cited : (55)

References (26)
  • 1
    • 84859698661 scopus 로고    scopus 로고
    • A PLS-based statistical approach for fault detection and isolation of robotic manipulators
    • Aug.
    • R. Muradore and P. Fiorini, "A PLS-based statistical approach for fault detection and isolation of robotic manipulators," IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3167-3175, Aug. 2012.
    • (2012) IEEE Trans. Ind. Electron. , vol.59 , Issue.8 , pp. 3167-3175
    • Muradore, R.1    Fiorini, P.2
  • 2
    • 0034297837 scopus 로고    scopus 로고
    • Neural-network-based motor rolling bearing fault diagnosis
    • Oct.
    • B. Li, M. Y. Chow, Y. Tipsuwan, and J. C. Hung, "Neural-network-based motor rolling bearing fault diagnosis," IEEE Trans. Ind. Electron., vol.47, no. 5, pp. 1060-1069, Oct. 2000.
    • (2000) IEEE Trans. Ind. Electron. , vol.47 , Issue.5 , pp. 1060-1069
    • Li, B.1    Chow, M.Y.2    Tipsuwan, Y.3    Hung, J.C.4
  • 5
    • 84919906918 scopus 로고    scopus 로고
    • Data-based techniques focused on modern industry: An overview
    • Jan.
    • S. Yin, X. Li, H. Gao, and O. Kaynak, "Data-based techniques focused on modern industry: An overview," IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 657-667, Jan. 2015.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.1 , pp. 657-667
    • Yin, S.1    Li, X.2    Gao, H.3    Kaynak, O.4
  • 6
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Jul.
    • J. Yu and S. J. Qin, "Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models," AIChE J.,vol.54,no.7, pp. 1811-1829, Jul. 2008.
    • (2008) AIChE J. , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 7
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • P. Kadlec, B. Gabrys, and S. Strandt, "Data-driven soft sensors in the process industry," Comput. Chem. Eng., vol. 33, no. 4, pp. 795-814, Apr. 21, 2009.
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 8
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    • Oct.
    • M. Kano and M. Ogawa, "The state of the art in chemical process control in Japan: Good practice and questionnaire survey," J. Process Control, vol. 20, no. 9, pp. 969-982, Oct. 2010.
    • (2010) J. Process Control , vol.20 , Issue.9 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 9
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • Dec.
    • S. J. Qin, "Survey on data-driven industrial process monitoring and diagnosis," Annu. Rev. Control, vol. 36, no. 2, pp. 220-234, Dec. 2012.
    • (2012) Annu. Rev. Control , vol.36 , Issue.2 , pp. 220-234
    • Qin, S.J.1
  • 10
    • 84879307272 scopus 로고    scopus 로고
    • A novel dynamic Bayesian networkbased networked process monitoring approach for fault detection, propagation identification, root cause diagnosis
    • Jul.
    • J. Yu and M. M. Rashid, "A novel dynamic Bayesian networkbased networked process monitoring approach for fault detection, propagation identification, root cause diagnosis," AIChE J., vol. 59, no. 7, pp. 2348-2365, Jul. 2013.
    • (2013) AIChE J. , vol.59 , Issue.7 , pp. 2348-2365
    • Yu, J.1    Rashid, M.M.2
  • 11
    • 84888306466 scopus 로고    scopus 로고
    • Design of inferential sensors in the process industry: A review of Bayesian methods
    • Nov.
    • S. Khatibisepehr, B. A. Huang, and S. Khare, "Design of inferential sensors in the process industry: A review of Bayesian methods," J. Process Control, vol. 23, no. 10, pp. 1575-1596, Nov. 2013.
    • (2013) J. Process Control , vol.23 , Issue.10 , pp. 1575-1596
    • Khatibisepehr, S.1    Huang, B.A.2    Khare, S.3
  • 12
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on databased process monitoring
    • Mar.
    • Z. Ge, Z. Song, and F. Gao, "Review of recent research on databased process monitoring," Ind. Eng. Chem. Res., vol. 52, no. 10, pp. 3543-3562, Mar. 2013.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , Issue.10 , pp. 3543-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 13
    • 65549141296 scopus 로고    scopus 로고
    • Principal component imagery for the quality monitoring of dynamic laser welding processes
    • Apr.
    • M. Jager and F. A. Hamprecht, "Principal component imagery for the quality monitoring of dynamic laser welding processes," IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1307-1313, Apr. 2009.
    • (2009) IEEE Trans. Ind. Electron. , vol.56 , Issue.4 , pp. 1307-1313
    • Jager, M.1    Hamprecht, F.A.2
  • 14
    • 84894068408 scopus 로고    scopus 로고
    • Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
    • Mar.
    • Q. C. Jiang and X. F. Yan, "Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring," AIChE J., vol. 60, no. 3, pp. 949-965, Mar. 2014.
    • (2014) AIChE J. , vol.60 , Issue.3 , pp. 949-965
    • Jiang, Q.C.1    Yan, X.F.2
  • 15
    • 77957978743 scopus 로고    scopus 로고
    • Behavior learning in dwelling environments with hidden Markov models
    • Nov.
    • D. Bruckner and R. Velik, "Behavior learning in dwelling environments with hidden Markov models," IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3653-3660, Nov. 2010.
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , Issue.11 , pp. 3653-3660
    • Bruckner, D.1    Velik, R.2
  • 17
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • Nov.
    • S. Wold, "Cross-validatory estimation of the number of components in factor and principal components models," Technometrics, vol. 20, no. 4, pp. 397-405, Nov. 1978.
    • (1978) Technometrics , vol.20 , Issue.4 , pp. 397-405
    • Wold, S.1
  • 18
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • Nov.
    • S. Valle, W. H. Li, and S. J. Qin, "Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods," Ind. Eng. Chem. Res., vol. 38, no. 11, pp. 4389-4401, Nov. 1999.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , Issue.11 , pp. 4389-4401
    • Valle, S.1    Li, W.H.2    Qin, S.J.3
  • 19
    • 0037093020 scopus 로고    scopus 로고
    • Fault detection behavior and performance analysis of PCA-based process monitoring methods
    • May
    • H. Wang, Z. Song, and P. Li, "Fault detection behavior and performance analysis of PCA-based process monitoring methods," Ind. Eng. Chem. Res., vol. 41, no. 10, pp. 2455-2464, May 2002.
    • (2002) Ind. Eng. Chem. Res. , vol.41 , Issue.10 , pp. 2455-2464
    • Wang, H.1    Song, Z.2    Li, P.3
  • 20
    • 0035533574 scopus 로고    scopus 로고
    • On the optimal selection of principal components in QSPR studies
    • Jan.
    • E. Besalu and L. Vera, "On the optimal selection of principal components in QSPR studies," J. Math. Chem., vol. 29, no. 1, pp. 21-34, Jan. 2001.
    • (2001) J. Math. Chem. , vol.29 , Issue.1 , pp. 21-34
    • Besalu, E.1    Vera, L.2
  • 21
    • 0037349189 scopus 로고    scopus 로고
    • A simple rule for the selection of principal components
    • Jan.
    • D. Karlis, G. Saporta, and A. Spinakis, "A simple rule for the selection of principal components," Commun. Stat. - Theory Methods, vol. 32, no. 3, pp. 643-666, Jan. 2003.
    • (2003) Commun. Stat. -Theory Methods , vol.32 , Issue.3 , pp. 643-666
    • Karlis, D.1    Saporta, G.2    Spinakis, A.3
  • 22
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Aug.
    • D. S. Kim and I. B. Lee, "Process monitoring based on probabilistic PCA," Chem. Intell. Lab. Syst., vol. 67, no. 2, pp. 109-123, Aug. 2003.
    • (2003) Chem. Intell. Lab. Syst. , vol.67 , Issue.2 , pp. 109-123
    • Kim, D.S.1    Lee, I.B.2
  • 23
    • 42649132516 scopus 로고    scopus 로고
    • Choosing principal components: A new graphical method based on Bayesian model selection
    • Apr.
    • P. Auer and D. Gervini, "Choosing principal components: A new graphical method based on Bayesian model selection," Commun. Stat. - Simul. Comput., vol. 37, no. 5, pp. 962-977, Apr. 2008.
    • (2008) Commun. Stat. -Simul. Comput. , vol.37 , Issue.5 , pp. 962-977
    • Auer, P.1    Gervini, D.2
  • 24
    • 78649340436 scopus 로고    scopus 로고
    • A principal component selection method based on modified randomization test for avoiding over-fit and under-fit in spectra calibration
    • Nov.
    • L. Li, Q. Li, H. Yan, and G. Zhang, "A principal component selection method based on modified randomization test for avoiding over-fit and under-fit in spectra calibration," Spectr. Spectr. Anal., vol. 30, no. 11, pp. 3041-3046, Nov. 2010.
    • (2010) Spectr. Spectr. Anal. , vol.30 , Issue.11 , pp. 3041-3046
    • Li, L.1    Li, Q.2    Yan, H.3    Zhang, G.4
  • 25
    • 78650953042 scopus 로고    scopus 로고
    • Mixture probabilistic PCR model for soft sensing of multimode processes
    • Z. Q. Ge, F. R. Gao, and Z. H. Song, "Mixture probabilistic PCR model for soft sensing of multimode processes," Chem. Intell. Lab. Syst., vol. 105, no. 1, pp. 91-105, Jan. 15, 2011.
    • (2011) Chem. Intell. Lab. Syst. , vol.105 , Issue.1 , pp. 91-105
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.