-
1
-
-
77955653153
-
0=G)-expansion method again
-
0=G)-expansion method again, Appl. Math. Comput., 217: 937-938, 2010.
-
(2010)
Appl. Math. Comput
, vol.217
, pp. 937-938
-
-
Aslan, İ.1
-
2
-
-
84870265361
-
0=G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics
-
0=G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun. Theor. Phys., 58: 623-630, 2012.
-
(2012)
Commun. Theor. Phys
, vol.58
, pp. 623-630
-
-
Bin, Z.1
-
3
-
-
18244403146
-
Non-differentiable variational principles
-
J. Cresson, Non-differentiable variational principles, J. Math. Anal. Appl., 307: 48-64, 2005.
-
(2005)
J. Math. Anal. Appl
, vol.307
, pp. 48-64
-
-
Cresson, J.1
-
4
-
-
69049086472
-
Compact finite difference method for the fractional diffusion equation
-
M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228: 7792-7804, 2009.
-
(2009)
J. Comput. Phys
, vol.228
, pp. 7792-7804
-
-
Cui, M.1
-
5
-
-
47749109857
-
Exact traveling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method
-
C. Q. Dai, Y. Y. Wang, Exact traveling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method, Phys. Scr., 78, 015013, 2008.
-
(2008)
Phys. Scr
, vol.78
-
-
Dai, C.Q.1
Wang, Y.Y.2
-
6
-
-
33748901201
-
The Adomian decomposition method for solving partial differential equations of fractal order in finite domains
-
A. M. A. El-Sayed, M. Gaber, The Adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys. Lett. A, 359: 175-182, 2006.
-
(2006)
Phys. Lett. A
, vol.359
, pp. 175-182
-
-
El-Sayed, A.M.A.1
Gaber, M.2
-
7
-
-
0004211129
-
-
Univ. of Chicago Press, Chicago
-
E. Fermi, J. Pasta, S. Ulam, Collected Papers of Enrico Fermi, Univ. of Chicago Press, Chicago, 1965.
-
(1965)
Collected Papers of Enrico Fermi
-
-
Fermi, E.1
Pasta, J.2
Ulam, S.3
-
8
-
-
84869126980
-
Exact solutions for nonlinear partial fractional differential equations
-
K. A. Gepreel, S. Omran, Exact solutions for nonlinear partial fractional differential equations, Chin. Phys. B, 21, 110204, 2012.
-
(2012)
Chin. Phys. B
, vol.21
-
-
Gepreel, K.A.1
Omran, S.2
-
9
-
-
0033702384
-
A coupling method of a homotopy technique and a perturbation technique for nonlinear problems
-
J. H. He, A coupling method of a homotopy technique and a perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35: 37-43, 2000.
-
(2000)
Int. J. Nonlinear Mech
, vol.35
, pp. 37-43
-
-
He, J.H.1
-
10
-
-
74449084990
-
The variational iteration method which should be followed
-
J. H. He, G. C. Wu, F. Austin, The variational iteration method which should be followed, Nonl. Sci. Lett. A, 1: 1-30, 2010.
-
(2010)
Nonl. Sci. Lett. A
, vol.1
, pp. 1-30
-
-
He, J.H.1
Wu, G.C.2
Austin, F.3
-
11
-
-
0037185548
-
Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions
-
X. B. Hu, W. X. Ma, Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Phys. Lett. A, 293: 161-165, 2002.
-
(2002)
Phys. Lett. A
, vol.293
, pp. 161-165
-
-
Hu, X.B.1
Ma, W.X.2
-
12
-
-
55649099424
-
A finite element solution for the fractional advection-dispersion equation
-
Q. Huang, G. Huang, H. Zhan, A finite element solution for the fractional advection-dispersion equation, Adv. Water Resour., 31: 1578-1589, 2008.
-
(2008)
Adv. Water Resour
, vol.31
, pp. 1578-1589
-
-
Huang, Q.1
Huang, G.2
Zhan, H.3
-
13
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51: 1367-1376, 2006.
-
(2006)
Comput. Math. Appl
, vol.51
, pp. 1367-1376
-
-
Jumarie, G.1
-
14
-
-
33745082228
-
New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations
-
G. Jumarie, New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Modelling, 44: 231-254, 2006.
-
(2006)
Math. Comput. Modelling
, vol.44
, pp. 231-254
-
-
Jumarie, G.1
-
15
-
-
70349212072
-
Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative
-
G. Jumarie, Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative, Appl. Math. Lett., 22: 1659-1664, 2009.
-
(2009)
Appl. Math. Lett
, vol.22
, pp. 1659-1664
-
-
Jumarie, G.1
-
16
-
-
33847309315
-
-
Elsevier, San Diego
-
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
-
(2006)
Theory and Applications of Fractional Differential Equations
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
17
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
K. M. Kolwankar, A. D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett., 80: 214-217, 1998.
-
(1998)
Phys. Rev. Lett
, vol.80
, pp. 214-217
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
18
-
-
79955470495
-
Fractional complex transformation for fractional differential equations
-
Z. B. Li, J. H. He, Fractional complex transformation for fractional differential equations, Math. Comput. Appl., 15: 970-973, 2010.
-
(2010)
Math. Comput. Appl
, vol.15
, pp. 970-973
-
-
Li, Z.B.1
He, J.H.2
-
19
-
-
84864025292
-
The first integral method for some time fractional differential equations
-
B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395: 684-693, 2012.
-
(2012)
J. Math. Anal. Appl
, vol.395
, pp. 684-693
-
-
Lu, B.1
-
20
-
-
0030145528
-
Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation
-
W. X. Ma, B. Fuchssteiner, Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation, Int. J. Nonlinear Mech., 31: 329-338, 1996.
-
(1996)
Int. J. Nonlinear Mech
, vol.31
, pp. 329-338
-
-
Ma, W.X.1
Fuchssteiner, B.2
-
21
-
-
67650383727
-
A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo-Miwa equation
-
W. X. Ma, J. H. Lee, A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo-Miwa equation, Chaos Solitons Fractals, 42: 1356-1363, 2009.
-
(2009)
Chaos Solitons Fractals
, vol.42
, pp. 1356-1363
-
-
Ma, W.X.1
Lee, J.H.2
-
22
-
-
33847192174
-
Partial differential equations possessing Frobenius integrable decompositions
-
W. X. Ma, H. Wu, J. He, Partial differential equations possessing Frobenius integrable decompositions, Phys. Lett. A, 364: 29-32, 2007.
-
(2007)
Phys. Lett. A
, vol.364
, pp. 29-32
-
-
Ma, W.X.1
Wu, H.2
He, J.3
-
23
-
-
84862777329
-
Hirota bilinear equations with linear subspaces of solutions
-
W. X. Ma, Y. Zhang, Y. Tang, J. Tu, Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput., 218: 7174-7183, 2012.
-
(2012)
Appl. Math. Comput
, vol.218
, pp. 7174-7183
-
-
Ma, W.X.1
Zhang, Y.2
Tang, Y.3
Tu, J.4
-
24
-
-
84863780073
-
Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm
-
W. X. Ma, Z. Zhu, Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 218: 11871-11879, 2012.
-
(2012)
Appl. Math. Comput
, vol.218
, pp. 11871-11879
-
-
Ma, W.X.1
Zhu, Z.2
-
25
-
-
1842842984
-
Rational solutions of the Toda lattice equation in Casoratian form
-
W. X. Ma, Y. You, Rational solutions of the Toda lattice equation in Casoratian form, Chaos Solitons Fractals, 22: 395-406, 2004.
-
(2004)
Chaos Solitons Fractals
, vol.22
, pp. 395-406
-
-
Ma, W.X.1
You, Y.2
-
27
-
-
0007255518
-
New discrete modified KdV equation
-
K. Narita, New discrete modified KdV equation, Prog. Theor. Phys., 86: 817-824, 1991.
-
(1991)
Prog. Theor. Phys
, vol.86
, pp. 817-824
-
-
Narita, K.1
-
28
-
-
0030622794
-
Special solutions to nonlinear difference-differential equations
-
K. Narita, Special solutions to nonlinear difference-differential equations, J. Math. Anal. Appl., 205: 273-279, 1997.
-
(1997)
J. Math. Anal. Appl
, vol.205
, pp. 273-279
-
-
Narita, K.1
-
29
-
-
0035528432
-
Solutions for a system of difference-differential equations related to the self-dual network equation
-
K. Narita, Solutions for a system of difference-differential equations related to the self-dual network equation, Prog. Theor. Phys., 106: 1079-1096, 2001.
-
(2001)
Prog. Theor. Phys
, vol.106
, pp. 1079-1096
-
-
Narita, K.1
-
30
-
-
36549063424
-
A generalized differential transform method for linear partial differential equations of fractional order
-
Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21: 194-199, 2008.
-
(2008)
Appl. Math. Lett
, vol.21
, pp. 194-199
-
-
Odibat, Z.1
Momani, S.2
-
31
-
-
70350564868
-
The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
-
Z. Odibat, S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. Math. Appl., 58: 2199-2208, 2009.
-
(2009)
Comput. Math. Appl
, vol.58
, pp. 2199-2208
-
-
Odibat, Z.1
Momani, S.2
-
34
-
-
77955450682
-
Discrete Jacobi sub-equation method for nonlinear differential-difference equations
-
Z. Wang, W. X. Ma, Discrete Jacobi sub-equation method for nonlinear differential-difference equations, Math. Methods Appl. Sci., 33: 1463-1472, 2010.
-
(2010)
Math. Methods Appl. Sci
, vol.33
, pp. 1463-1472
-
-
Wang, Z.1
Ma, W.X.2
-
35
-
-
77953478991
-
Fractional variational iteration method and its application
-
G. C. Wu, E. W. M. Lee, Fractional variational iteration method and its application, Phys. Lett. A, 374: 273-279, 2010.
-
(2010)
Phys. Lett. A
, vol.374
, pp. 273-279
-
-
Wu, G.C.1
Lee, E.W.M.2
-
36
-
-
62949087346
-
ADM-Padé technique for the nonlinear lattice equations
-
P. Yang, Y. Chen, Z. B. Li, ADM-Padé technique for the nonlinear lattice equations, Appl. Math. Comput., 210: 362-375, 2009.
-
(2009)
Appl. Math. Comput
, vol.210
, pp. 362-375
-
-
Yang, P.1
Chen, Y.2
Li, Z.B.3
-
37
-
-
59649106322
-
0=G)-expansion method for nonlinear differential-difference equations
-
0=G)-expansion method for nonlinear differential-difference equations, Phys. Lett. A, 373: 905-910, 2009.
-
(2009)
Phys. Lett. A
, vol.373
, pp. 905-910
-
-
Zhang, S.1
Dong, L.2
Ba, J.M.3
Sun, Y.N.4
-
38
-
-
77949534972
-
0=G)-expansion method for a discrete nonlinear Schrödinger equation
-
0=G)-expansion method for a discrete nonlinear Schrödinger equation, Pramana-J. Phys., 74: 207-218, 2010.
-
(2010)
Pramana-J. Phys
, vol.74
, pp. 207-218
-
-
Zhang, S.1
Dong, L.2
Ba, J.M.3
Sun, Y.N.4
-
39
-
-
79251635229
-
Fractional sub-equation method and its applications to nonlinear fractional PDEs
-
S. Zhang, H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 375: 1069-1073, 2011.
-
(2011)
Phys. Lett. A
, vol.375
, pp. 1069-1073
-
-
Zhang, S.1
Zhang, H.Q.2
-
40
-
-
70350566156
-
The homotopy perturbation method for discontinued problems arising in nanotechnology
-
S. D. Zhu, Y. M. Chu, S. L. Qiu, The homotopy perturbation method for discontinued problems arising in nanotechnology, Comput. Math. Appl., 58: 2398-2401, 2009.
-
(2009)
Comput. Math. Appl
, vol.58
, pp. 2398-2401
-
-
Zhu, S.D.1
Chu, Y.M.2
Qiu, S.L.3
|