메뉴 건너뛰기




Volumn 20, Issue 1, 2014, Pages 132-144

Symbolic computation of exact solutions for fractional differential-difference equation models

Author keywords

(G =G) expansion method; Differential difference equation; Fractional calculus

Indexed keywords


EID: 84930181411     PISSN: 13925113     EISSN: 23358963     Source Type: Journal    
DOI: 10.15388/NA.2015.1.9     Document Type: Article
Times cited : (17)

References (40)
  • 1
    • 77955653153 scopus 로고    scopus 로고
    • 0=G)-expansion method again
    • 0=G)-expansion method again, Appl. Math. Comput., 217: 937-938, 2010.
    • (2010) Appl. Math. Comput , vol.217 , pp. 937-938
    • Aslan, İ.1
  • 2
    • 84870265361 scopus 로고    scopus 로고
    • 0=G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics
    • 0=G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun. Theor. Phys., 58: 623-630, 2012.
    • (2012) Commun. Theor. Phys , vol.58 , pp. 623-630
    • Bin, Z.1
  • 3
    • 18244403146 scopus 로고    scopus 로고
    • Non-differentiable variational principles
    • J. Cresson, Non-differentiable variational principles, J. Math. Anal. Appl., 307: 48-64, 2005.
    • (2005) J. Math. Anal. Appl , vol.307 , pp. 48-64
    • Cresson, J.1
  • 4
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228: 7792-7804, 2009.
    • (2009) J. Comput. Phys , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 5
    • 47749109857 scopus 로고    scopus 로고
    • Exact traveling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method
    • C. Q. Dai, Y. Y. Wang, Exact traveling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method, Phys. Scr., 78, 015013, 2008.
    • (2008) Phys. Scr , vol.78
    • Dai, C.Q.1    Wang, Y.Y.2
  • 6
    • 33748901201 scopus 로고    scopus 로고
    • The Adomian decomposition method for solving partial differential equations of fractal order in finite domains
    • A. M. A. El-Sayed, M. Gaber, The Adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys. Lett. A, 359: 175-182, 2006.
    • (2006) Phys. Lett. A , vol.359 , pp. 175-182
    • El-Sayed, A.M.A.1    Gaber, M.2
  • 8
    • 84869126980 scopus 로고    scopus 로고
    • Exact solutions for nonlinear partial fractional differential equations
    • K. A. Gepreel, S. Omran, Exact solutions for nonlinear partial fractional differential equations, Chin. Phys. B, 21, 110204, 2012.
    • (2012) Chin. Phys. B , vol.21
    • Gepreel, K.A.1    Omran, S.2
  • 9
    • 0033702384 scopus 로고    scopus 로고
    • A coupling method of a homotopy technique and a perturbation technique for nonlinear problems
    • J. H. He, A coupling method of a homotopy technique and a perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35: 37-43, 2000.
    • (2000) Int. J. Nonlinear Mech , vol.35 , pp. 37-43
    • He, J.H.1
  • 10
    • 74449084990 scopus 로고    scopus 로고
    • The variational iteration method which should be followed
    • J. H. He, G. C. Wu, F. Austin, The variational iteration method which should be followed, Nonl. Sci. Lett. A, 1: 1-30, 2010.
    • (2010) Nonl. Sci. Lett. A , vol.1 , pp. 1-30
    • He, J.H.1    Wu, G.C.2    Austin, F.3
  • 11
    • 0037185548 scopus 로고    scopus 로고
    • Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions
    • X. B. Hu, W. X. Ma, Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Phys. Lett. A, 293: 161-165, 2002.
    • (2002) Phys. Lett. A , vol.293 , pp. 161-165
    • Hu, X.B.1    Ma, W.X.2
  • 12
    • 55649099424 scopus 로고    scopus 로고
    • A finite element solution for the fractional advection-dispersion equation
    • Q. Huang, G. Huang, H. Zhan, A finite element solution for the fractional advection-dispersion equation, Adv. Water Resour., 31: 1578-1589, 2008.
    • (2008) Adv. Water Resour , vol.31 , pp. 1578-1589
    • Huang, Q.1    Huang, G.2    Zhan, H.3
  • 13
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
    • G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51: 1367-1376, 2006.
    • (2006) Comput. Math. Appl , vol.51 , pp. 1367-1376
    • Jumarie, G.1
  • 14
    • 33745082228 scopus 로고    scopus 로고
    • New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations
    • G. Jumarie, New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Modelling, 44: 231-254, 2006.
    • (2006) Math. Comput. Modelling , vol.44 , pp. 231-254
    • Jumarie, G.1
  • 15
    • 70349212072 scopus 로고    scopus 로고
    • Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative
    • G. Jumarie, Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative, Appl. Math. Lett., 22: 1659-1664, 2009.
    • (2009) Appl. Math. Lett , vol.22 , pp. 1659-1664
    • Jumarie, G.1
  • 17
    • 0001707390 scopus 로고    scopus 로고
    • Local fractional Fokker-Planck equation
    • K. M. Kolwankar, A. D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett., 80: 214-217, 1998.
    • (1998) Phys. Rev. Lett , vol.80 , pp. 214-217
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 18
    • 79955470495 scopus 로고    scopus 로고
    • Fractional complex transformation for fractional differential equations
    • Z. B. Li, J. H. He, Fractional complex transformation for fractional differential equations, Math. Comput. Appl., 15: 970-973, 2010.
    • (2010) Math. Comput. Appl , vol.15 , pp. 970-973
    • Li, Z.B.1    He, J.H.2
  • 19
    • 84864025292 scopus 로고    scopus 로고
    • The first integral method for some time fractional differential equations
    • B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395: 684-693, 2012.
    • (2012) J. Math. Anal. Appl , vol.395 , pp. 684-693
    • Lu, B.1
  • 20
    • 0030145528 scopus 로고    scopus 로고
    • Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation
    • W. X. Ma, B. Fuchssteiner, Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation, Int. J. Nonlinear Mech., 31: 329-338, 1996.
    • (1996) Int. J. Nonlinear Mech , vol.31 , pp. 329-338
    • Ma, W.X.1    Fuchssteiner, B.2
  • 21
    • 67650383727 scopus 로고    scopus 로고
    • A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo-Miwa equation
    • W. X. Ma, J. H. Lee, A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo-Miwa equation, Chaos Solitons Fractals, 42: 1356-1363, 2009.
    • (2009) Chaos Solitons Fractals , vol.42 , pp. 1356-1363
    • Ma, W.X.1    Lee, J.H.2
  • 22
    • 33847192174 scopus 로고    scopus 로고
    • Partial differential equations possessing Frobenius integrable decompositions
    • W. X. Ma, H. Wu, J. He, Partial differential equations possessing Frobenius integrable decompositions, Phys. Lett. A, 364: 29-32, 2007.
    • (2007) Phys. Lett. A , vol.364 , pp. 29-32
    • Ma, W.X.1    Wu, H.2    He, J.3
  • 23
    • 84862777329 scopus 로고    scopus 로고
    • Hirota bilinear equations with linear subspaces of solutions
    • W. X. Ma, Y. Zhang, Y. Tang, J. Tu, Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput., 218: 7174-7183, 2012.
    • (2012) Appl. Math. Comput , vol.218 , pp. 7174-7183
    • Ma, W.X.1    Zhang, Y.2    Tang, Y.3    Tu, J.4
  • 24
    • 84863780073 scopus 로고    scopus 로고
    • Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm
    • W. X. Ma, Z. Zhu, Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 218: 11871-11879, 2012.
    • (2012) Appl. Math. Comput , vol.218 , pp. 11871-11879
    • Ma, W.X.1    Zhu, Z.2
  • 25
    • 1842842984 scopus 로고    scopus 로고
    • Rational solutions of the Toda lattice equation in Casoratian form
    • W. X. Ma, Y. You, Rational solutions of the Toda lattice equation in Casoratian form, Chaos Solitons Fractals, 22: 395-406, 2004.
    • (2004) Chaos Solitons Fractals , vol.22 , pp. 395-406
    • Ma, W.X.1    You, Y.2
  • 27
    • 0007255518 scopus 로고
    • New discrete modified KdV equation
    • K. Narita, New discrete modified KdV equation, Prog. Theor. Phys., 86: 817-824, 1991.
    • (1991) Prog. Theor. Phys , vol.86 , pp. 817-824
    • Narita, K.1
  • 28
    • 0030622794 scopus 로고    scopus 로고
    • Special solutions to nonlinear difference-differential equations
    • K. Narita, Special solutions to nonlinear difference-differential equations, J. Math. Anal. Appl., 205: 273-279, 1997.
    • (1997) J. Math. Anal. Appl , vol.205 , pp. 273-279
    • Narita, K.1
  • 29
    • 0035528432 scopus 로고    scopus 로고
    • Solutions for a system of difference-differential equations related to the self-dual network equation
    • K. Narita, Solutions for a system of difference-differential equations related to the self-dual network equation, Prog. Theor. Phys., 106: 1079-1096, 2001.
    • (2001) Prog. Theor. Phys , vol.106 , pp. 1079-1096
    • Narita, K.1
  • 30
    • 36549063424 scopus 로고    scopus 로고
    • A generalized differential transform method for linear partial differential equations of fractional order
    • Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21: 194-199, 2008.
    • (2008) Appl. Math. Lett , vol.21 , pp. 194-199
    • Odibat, Z.1    Momani, S.2
  • 31
    • 70350564868 scopus 로고    scopus 로고
    • The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
    • Z. Odibat, S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. Math. Appl., 58: 2199-2208, 2009.
    • (2009) Comput. Math. Appl , vol.58 , pp. 2199-2208
    • Odibat, Z.1    Momani, S.2
  • 34
    • 77955450682 scopus 로고    scopus 로고
    • Discrete Jacobi sub-equation method for nonlinear differential-difference equations
    • Z. Wang, W. X. Ma, Discrete Jacobi sub-equation method for nonlinear differential-difference equations, Math. Methods Appl. Sci., 33: 1463-1472, 2010.
    • (2010) Math. Methods Appl. Sci , vol.33 , pp. 1463-1472
    • Wang, Z.1    Ma, W.X.2
  • 35
    • 77953478991 scopus 로고    scopus 로고
    • Fractional variational iteration method and its application
    • G. C. Wu, E. W. M. Lee, Fractional variational iteration method and its application, Phys. Lett. A, 374: 273-279, 2010.
    • (2010) Phys. Lett. A , vol.374 , pp. 273-279
    • Wu, G.C.1    Lee, E.W.M.2
  • 36
    • 62949087346 scopus 로고    scopus 로고
    • ADM-Padé technique for the nonlinear lattice equations
    • P. Yang, Y. Chen, Z. B. Li, ADM-Padé technique for the nonlinear lattice equations, Appl. Math. Comput., 210: 362-375, 2009.
    • (2009) Appl. Math. Comput , vol.210 , pp. 362-375
    • Yang, P.1    Chen, Y.2    Li, Z.B.3
  • 37
    • 59649106322 scopus 로고    scopus 로고
    • 0=G)-expansion method for nonlinear differential-difference equations
    • 0=G)-expansion method for nonlinear differential-difference equations, Phys. Lett. A, 373: 905-910, 2009.
    • (2009) Phys. Lett. A , vol.373 , pp. 905-910
    • Zhang, S.1    Dong, L.2    Ba, J.M.3    Sun, Y.N.4
  • 38
    • 77949534972 scopus 로고    scopus 로고
    • 0=G)-expansion method for a discrete nonlinear Schrödinger equation
    • 0=G)-expansion method for a discrete nonlinear Schrödinger equation, Pramana-J. Phys., 74: 207-218, 2010.
    • (2010) Pramana-J. Phys , vol.74 , pp. 207-218
    • Zhang, S.1    Dong, L.2    Ba, J.M.3    Sun, Y.N.4
  • 39
    • 79251635229 scopus 로고    scopus 로고
    • Fractional sub-equation method and its applications to nonlinear fractional PDEs
    • S. Zhang, H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 375: 1069-1073, 2011.
    • (2011) Phys. Lett. A , vol.375 , pp. 1069-1073
    • Zhang, S.1    Zhang, H.Q.2
  • 40
    • 70350566156 scopus 로고    scopus 로고
    • The homotopy perturbation method for discontinued problems arising in nanotechnology
    • S. D. Zhu, Y. M. Chu, S. L. Qiu, The homotopy perturbation method for discontinued problems arising in nanotechnology, Comput. Math. Appl., 58: 2398-2401, 2009.
    • (2009) Comput. Math. Appl , vol.58 , pp. 2398-2401
    • Zhu, S.D.1    Chu, Y.M.2    Qiu, S.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.