-
5
-
-
70350566604
-
Application of He's variational iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation
-
Safari M., Ganji D.D., Moslemi M. Application of He's variational iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation. Comput. Math. Appl. 2009, 58:2091-2097.
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2091-2097
-
-
Safari, M.1
Ganji, D.D.2
Moslemi, M.3
-
6
-
-
43949121726
-
The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method
-
Inc M. The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 2008, 345:476-484.
-
(2008)
J. Math. Anal. Appl.
, vol.345
, pp. 476-484
-
-
Inc, M.1
-
7
-
-
77953478991
-
Fractional variational iteration method and its application
-
Wu G.C., Lee E.W.M. Fractional variational iteration method and its application. Phys. Lett. A 2010, 374:2506-2509.
-
(2010)
Phys. Lett. A
, vol.374
, pp. 2506-2509
-
-
Wu, G.C.1
Lee, E.W.M.2
-
8
-
-
77951790468
-
Highly nonlinear temperature-dependent Fin analysis by variational iteration method
-
Fouladi F., Hosseinzadeh E., Barari A., et al. Highly nonlinear temperature-dependent Fin analysis by variational iteration method. Heat Transfer Res. 2010, 41:155-165.
-
(2010)
Heat Transfer Res.
, vol.41
, pp. 155-165
-
-
Fouladi, F.1
Hosseinzadeh, E.2
Barari, A.3
-
9
-
-
65449123574
-
Solving the fractional BBM-Burgers equation using the homotopy analysis method
-
Song L.N., Zhang H.Q. Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Solitons Fractals 2009, 40:1616-1622.
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 1616-1622
-
-
Song, L.N.1
Zhang, H.Q.2
-
10
-
-
77954459409
-
Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems
-
Abbasbandy S., Shirzadi A. Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems. Numer. Algorithms 2010, 54:521-532.
-
(2010)
Numer. Algorithms
, vol.54
, pp. 521-532
-
-
Abbasbandy, S.1
Shirzadi, A.2
-
11
-
-
73449135842
-
An approximation of the analytic solution of some nonlinear heat transfer in Fin and 3D diffusion equations using HAM
-
Bararnia H., Domairry G., Gorji M., et al. An approximation of the analytic solution of some nonlinear heat transfer in Fin and 3D diffusion equations using HAM. Numer. Methods Partial Differential Equations 2010, 26:1-13.
-
(2010)
Numer. Methods Partial Differential Equations
, vol.26
, pp. 1-13
-
-
Bararnia, H.1
Domairry, G.2
Gorji, M.3
-
12
-
-
77949497930
-
Explicit approximate solution of the coupled KdV equations by using the homotopy analysis method
-
Rashidi M.M., Domairry G., Doosthosseini A., Dinarvand S. Explicit approximate solution of the coupled KdV equations by using the homotopy analysis method. Int. J. Math. Anal. 2008, 12:581-589.
-
(2008)
Int. J. Math. Anal.
, vol.12
, pp. 581-589
-
-
Rashidi, M.M.1
Domairry, G.2
Doosthosseini, A.3
Dinarvand, S.4
-
13
-
-
73449083810
-
Analytical solution of time-fractional Navier-Stokes equation in polar coordinate by homotopy perturbation method
-
Ganji Z., Ganji D., Ganji A.D., Rostamian M. Analytical solution of time-fractional Navier-Stokes equation in polar coordinate by homotopy perturbation method. Numer. Methods Partial Differential Equations 2010, 26:117-124.
-
(2010)
Numer. Methods Partial Differential Equations
, vol.26
, pp. 117-124
-
-
Ganji, Z.1
Ganji, D.2
Ganji, A.D.3
Rostamian, M.4
-
14
-
-
79955470464
-
The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations
-
Gepreel K.A. The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations. Appl. Math. Lett. 2011, 24:1428-1434.
-
(2011)
Appl. Math. Lett.
, vol.24
, pp. 1428-1434
-
-
Gepreel, K.A.1
-
15
-
-
78651257332
-
Homotopy perturbation method for fractional Fornberg-Whitham equation
-
Gupta P.K., Singh M. Homotopy perturbation method for fractional Fornberg-Whitham equation. Comput. Math. Appl. 2011, 61:50-254.
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 50-254
-
-
Gupta, P.K.1
Singh, M.2
-
16
-
-
33745108563
-
Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order
-
Jumarie G. Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order. Appl. Math. Lett. 2006, 19:873-880.
-
(2006)
Appl. Math. Lett.
, vol.19
, pp. 873-880
-
-
Jumarie, G.1
-
17
-
-
79251635229
-
Fractional sub-equation method and its applications to nonlinear fractional PDEs
-
Zhang S., Zhang H.Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 2011, 375:1069-1073.
-
(2011)
Phys. Lett. A
, vol.375
, pp. 1069-1073
-
-
Zhang, S.1
Zhang, H.Q.2
-
18
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51:1367-1376.
-
(2006)
Comput. Math. Appl.
, vol.51
, pp. 1367-1376
-
-
Jumarie, G.1
-
19
-
-
33845905203
-
Traveling waves to a Burgers-Korteweg-de Vries-type equation with higher-order nonlinearities
-
Feng Z.S., Roger K. Traveling waves to a Burgers-Korteweg-de Vries-type equation with higher-order nonlinearities. J. Math. Anal. Appl. 2007, 328:1435-1450.
-
(2007)
J. Math. Anal. Appl.
, vol.328
, pp. 1435-1450
-
-
Feng, Z.S.1
Roger, K.2
-
20
-
-
42949139271
-
Traveling wave behavior for a generalized fisher equation
-
Feng Z.S. Traveling wave behavior for a generalized fisher equation. Chaos Solitons Fractals 2008, 38:481-488.
-
(2008)
Chaos Solitons Fractals
, vol.38
, pp. 481-488
-
-
Feng, Z.S.1
-
21
-
-
49049111091
-
The first integral method for solving some important nonlinear partial differential equations
-
Raslan K.R. The first integral method for solving some important nonlinear partial differential equations. Nonlinear. Dynam. 2008, 53:281.
-
(2008)
Nonlinear. Dynam.
, vol.53
, pp. 281
-
-
Raslan, K.R.1
-
22
-
-
77949914242
-
Travelling wave solutions of nonlinear partial equations by using the first integral method
-
Lu B., Zhang H.Q., Xie F.D. Travelling wave solutions of nonlinear partial equations by using the first integral method. Appl. Math. Comput. 2010, 216:1329-1336.
-
(2010)
Appl. Math. Comput.
, vol.216
, pp. 1329-1336
-
-
Lu, B.1
Zhang, H.Q.2
Xie, F.D.3
-
23
-
-
77957792961
-
Exact solutions of the nonlinear Schrödinger equation by the first integral method
-
Taghizadeh N., Mirzazadeh M., Farahrooz F. Exact solutions of the nonlinear Schrödinger equation by the first integral method. J. Math. Anal. Appl. 2011, 374:549-553.
-
(2011)
J. Math. Anal. Appl.
, vol.374
, pp. 549-553
-
-
Taghizadeh, N.1
Mirzazadeh, M.2
Farahrooz, F.3
-
25
-
-
78049333706
-
On nonlinear fractional Klein-Gordon equation
-
Golmankhaneh A.K., Baleanu D. On nonlinear fractional Klein-Gordon equation. Sigal Process. 2011, 91:446-451.
-
(2011)
Sigal Process.
, vol.91
, pp. 446-451
-
-
Golmankhaneh, A.K.1
Baleanu, D.2
-
26
-
-
61449224678
-
Solitary wave solutions for a time-fraction generalized Hirota-Satsuma coupled KdV equation by an analytical technique
-
Ganji Z.Z., Ganji D.D., Rostamiyan Y. Solitary wave solutions for a time-fraction generalized Hirota-Satsuma coupled KdV equation by an analytical technique. Appl. Math. Model. 2009, 33:3107-3113.
-
(2009)
Appl. Math. Model.
, vol.33
, pp. 3107-3113
-
-
Ganji, Z.Z.1
Ganji, D.D.2
Rostamiyan, Y.3
-
27
-
-
84858112048
-
Solitary wave solutions for a time-fraction generalized Hirota-Satsuma coupled KdV equation by a new analytical technique
-
Article 954674
-
Shateri Majid, Ganji D.D. Solitary wave solutions for a time-fraction generalized Hirota-Satsuma coupled KdV equation by a new analytical technique. Int. J. Differ. Equ. 2010, 2010. Article 954674.
-
(2010)
Int. J. Differ. Equ.
, vol.2010
-
-
Shateri, M.1
Ganji, D.D.2
-
28
-
-
56449093058
-
Rational approximation solution of the fractional Sharma-Tasso-Olever equation
-
Song L.N., Wang Q., Zhang H.Q. Rational approximation solution of the fractional Sharma-Tasso-Olever equation. J. Comput. Appl. Math. 2009, 224:210-218.
-
(2009)
J. Comput. Appl. Math.
, vol.224
, pp. 210-218
-
-
Song, L.N.1
Wang, Q.2
Zhang, H.Q.3
|