메뉴 건너뛰기




Volumn 218, Issue 24, 2012, Pages 11871-11879

Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm

Author keywords

Hirota bilinear form; Multiple wave solution; Soliton equation

Indexed keywords

BILINEAR FORM; MULTIPLE WAVES; SOLITON EQUATION; WAVE FREQUENCIES;

EID: 84863780073     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.05.049     Document Type: Article
Times cited : (376)

References (50)
  • 1
    • 0002464716 scopus 로고
    • Direct methods in soliton theory
    • R.K. Bullough, P.J. Caudrey, Springer Berlin
    • R. Hirota Direct methods in soliton theory R.K. Bullough, P.J. Caudrey, Solitons 1980 Springer Berlin 157 176
    • (1980) Solitons , pp. 157-176
    • Hirota, R.1
  • 3
    • 78650257685 scopus 로고    scopus 로고
    • Hirota's bilinear method and soliton solutions
    • J. Hietarinta Hirota's bilinear method and soliton solutions Phys. AUC 15 Part 1 2005 31 37
    • (2005) Phys. AUC , vol.15 , Issue.PART 1 , pp. 31-37
    • Hietarinta, J.1
  • 4
    • 78149402626 scopus 로고    scopus 로고
    • A multiple exp-function method for nonlinear differential equations and its application
    • 8p
    • W.X. Ma, T.W. Huang, and Y. Zhang A multiple exp-function method for nonlinear differential equations and its application Phys. Scri. 82 2010 065003 (8pp)
    • (2010) Phys. Scri. , vol.82 , pp. 065003
    • Ma, W.X.1    Huang, T.W.2    Zhang, Y.3
  • 5
    • 84863783374 scopus 로고    scopus 로고
    • Application of multiple exp-function method to obtain multi-soliton solutions of (2+1)- and (3+1)-dimensional breaking soliton equations
    • M.T. Darvishi1, M. Najafi, and M. Najafi Application of multiple exp-function method to obtain multi-soliton solutions of (2+1)- and (3+1)-dimensional breaking soliton equations Am. J. Comput. Appl. Math. 1 2011 41 47
    • (2011) Am. J. Comput. Appl. Math. , vol.1 , pp. 41-47
    • Darvishil, M.T.1    Najafi, M.2    Najafi, M.3
  • 6
    • 79651474215 scopus 로고    scopus 로고
    • Linear superposition principle applying to Hirota bilinear equations
    • W.X. Ma, and E.G. Fan Linear superposition principle applying to Hirota bilinear equations Comput. Math. Appl. 61 2011 950 959
    • (2011) Comput. Math. Appl. , vol.61 , pp. 950-959
    • Ma, W.X.1    Fan, E.G.2
  • 7
    • 84862777329 scopus 로고    scopus 로고
    • Hirota bilinear equations with linear subspaces of solutions
    • W.X. Ma, Y. Zhang, Y.N. Tang, and J.Y. Tu Hirota bilinear equations with linear subspaces of solutions Appl. Math. Comput. 218 2012 7174 7183
    • (2012) Appl. Math. Comput. , vol.218 , pp. 7174-7183
    • Ma, W.X.1    Zhang, Y.2    Tang, Y.N.3    Tu, J.Y.4
  • 8
    • 0000293426 scopus 로고
    • Resonance of solitons in one dimension
    • R. Hirota, and M. Ito Resonance of solitons in one dimension J. Phys. Soc. Jpn. 52 1983 744 748
    • (1983) J. Phys. Soc. Jpn. , vol.52 , pp. 744-748
    • Hirota, R.1    Ito, M.2
  • 9
    • 36149031409 scopus 로고
    • Exact solutions for two nonlinear equations i
    • H.B. Lan, and K.L. Wang Exact solutions for two nonlinear equations I J. Phys. A Math. Gen. 23 1990 3923 3928
    • (1990) J. Phys. A Math. Gen. , vol.23 , pp. 3923-3928
    • Lan, H.B.1    Wang, K.L.2
  • 10
    • 0004483962 scopus 로고    scopus 로고
    • The tanh method I: Exact solutions of nonlinear evolution and wave equations
    • W. Malfliet, and W. Hereman The tanh method I: Exact solutions of nonlinear evolution and wave equations Phys. Scri. 54 1996 563 568
    • (1996) Phys. Scri. , vol.54 , pp. 563-568
    • Malfliet, W.1    Hereman, W.2
  • 11
    • 0030145528 scopus 로고    scopus 로고
    • Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation
    • W.X. Ma, and B. Fuchssteiner Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation Int. J. Non-linear Mech. 31 1996 329 338
    • (1996) Int. J. Non-linear Mech. , vol.31 , pp. 329-338
    • Ma, W.X.1    Fuchssteiner, B.2
  • 13
    • 77956803373 scopus 로고    scopus 로고
    • Various exact travelling wave solutions for Kundu equation with fifth-order nonlinear term
    • H.Q. Zhang Various exact travelling wave solutions for Kundu equation with fifth-order nonlinear term Rep. Math. Phys. 65 2010 231 239
    • (2010) Rep. Math. Phys. , vol.65 , pp. 231-239
    • Zhang, H.Q.1
  • 14
    • 56349119467 scopus 로고    scopus 로고
    • The new tri-function method to multiple exact solutions of nonlinear wave equations
    • 5p
    • Z.Y. Yan The new tri-function method to multiple exact solutions of nonlinear wave equations Phys. Scri. 78 2008 035001 (5pp)
    • (2008) Phys. Scri. , vol.78 , pp. 035001
    • Yan, Z.Y.1
  • 15
    • 37549033511 scopus 로고    scopus 로고
    • G ′G) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
    • G ′G) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics Phys. Lett. A 372 2008 417 423
    • (2008) Phys. Lett. A , vol.372 , pp. 417-423
    • Wang, M.L.1    Li, X.Z.2    Zhang, J.L.3
  • 16
    • 59349118015 scopus 로고    scopus 로고
    • G ′ / G) -expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics
    • 12p
    • G ′ / G) -expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics J. Math. Phys. 50 2009 013502 (12pp)
    • (2009) J. Math. Phys. , vol.50 , pp. 013502
    • Zayed, E.M.E.1    Gepreel, K.A.2
  • 17
    • 0037136277 scopus 로고    scopus 로고
    • Complexiton solutions to the Korteweg-de Vries equation
    • W.X. Ma Complexiton solutions to the Korteweg-de Vries equation Phys. Lett. A 301 2002 35 44
    • (2002) Phys. Lett. A , vol.301 , pp. 35-44
    • Ma, W.X.1
  • 18
    • 4544353887 scopus 로고    scopus 로고
    • Complexiton solutions of the Toda lattice equation
    • W.X. Ma, and K. Maruno Complexiton solutions of the Toda lattice equation Phys. A 343 2004 219 237
    • (2004) Phys. A , vol.343 , pp. 219-237
    • Ma, W.X.1    Maruno, K.2
  • 19
    • 0842290212 scopus 로고    scopus 로고
    • Soliton, positon and negaton solutions to a Schrödinger self-consistent source equation
    • W.X. Ma Soliton, positon and negaton solutions to a Schrödinger self-consistent source equation J. Phys. Soc. Jpn. 72 2003 3017 3019
    • (2003) J. Phys. Soc. Jpn. , vol.72 , pp. 3017-3019
    • Ma, W.X.1
  • 20
    • 20444439142 scopus 로고    scopus 로고
    • Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources
    • W.X. Ma Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources Chaos Solitons Fract. 26 2005 1453 1458
    • (2005) Chaos Solitons Fract. , vol.26 , pp. 1453-1458
    • Ma, W.X.1
  • 21
    • 18144382273 scopus 로고    scopus 로고
    • Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions
    • W.X. Ma, and Y. You Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions Trans. Am. Math. Soc. 357 2005 1753 1778
    • (2005) Trans. Am. Math. Soc. , vol.357 , pp. 1753-1778
    • Ma, W.X.1    You, Y.2
  • 22
    • 63449113626 scopus 로고    scopus 로고
    • A second Wronskian formulation of the Boussinesq equation
    • W.X. Ma, C.X. Li, and J.S. He A second Wronskian formulation of the Boussinesq equation Nonlinear Anal. 70 2009 4245 4258
    • (2009) Nonlinear Anal. , vol.70 , pp. 4245-4258
    • Ma, W.X.1    Li, C.X.2    He, J.S.3
  • 23
    • 33947640521 scopus 로고    scopus 로고
    • Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons
    • C.X. Li, W.X. Ma, X.J. Liu, and Y.B. Zeng Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons Inverse Probl. 23 2007 279 296
    • (2007) Inverse Probl. , vol.23 , pp. 279-296
    • Li, C.X.1    Ma, W.X.2    Liu, X.J.3    Zeng, Y.B.4
  • 24
    • 50949109194 scopus 로고    scopus 로고
    • An application of the Casoratian technique to the 2D Toda lattice equation
    • W.X. Ma An application of the Casoratian technique to the 2D Toda lattice equation Mod. Phys. Lett. B 22 2008 1815 1825
    • (2008) Mod. Phys. Lett. B , vol.22 , pp. 1815-1825
    • Ma, W.X.1
  • 25
    • 0000266051 scopus 로고
    • Soliton solutions to the BKP equations - I. The Pfaffian technique
    • R. Hirota Soliton solutions to the BKP equations - I. The Pfaffian technique J. Phys. Soc. Jpn. 58 1989 2285 2296
    • (1989) J. Phys. Soc. Jpn. , vol.58 , pp. 2285-2296
    • Hirota, R.1
  • 26
    • 70349172982 scopus 로고    scopus 로고
    • Extended Gram-type determinant solutions to the Kadomtsev-Petviashvili equation
    • G.F. Yu, and X.B. Hu Extended Gram-type determinant solutions to the Kadomtsev-Petviashvili equation Math. Comput. Simulat. 80 2009 184 191
    • (2009) Math. Comput. Simulat. , vol.80 , pp. 184-191
    • Yu, G.F.1    Hu, X.B.2
  • 27
    • 63449123795 scopus 로고    scopus 로고
    • Seven common errors in finding exact solutions of nonlinear differential equations
    • N.A. Kudryashov Seven common errors in finding exact solutions of nonlinear differential equations Commun. Nonlinear Sci. Numer. Simulat. 14 2009 3507 3529
    • (2009) Commun. Nonlinear Sci. Numer. Simulat. , vol.14 , pp. 3507-3529
    • Kudryashov, N.A.1
  • 28
    • 79951580830 scopus 로고    scopus 로고
    • Comment on the 3 + 1 dimensional Kadomtsev-Petviashvili equations
    • W.X. Ma Comment on the 3 + 1 dimensional Kadomtsev-Petviashvili equations Commun. Nonlinear Sci. Numer. Simulat. 16 2011 2663 2666
    • (2011) Commun. Nonlinear Sci. Numer. Simulat. , vol.16 , pp. 2663-2666
    • Ma, W.X.1
  • 29
    • 33745177020 scopus 로고    scopus 로고
    • Exp-function method for nonlinear wave equations
    • J.H. He, and H.X. Wu Exp-function method for nonlinear wave equations Chaos Solitons Fract. 30 2006 700 708
    • (2006) Chaos Solitons Fract. , vol.30 , pp. 700-708
    • He, J.H.1    Wu, H.X.2
  • 30
    • 34548246435 scopus 로고    scopus 로고
    • Application of Exp-function method for nonlinear evolution equations with variable coefficients
    • S.A. El-Wakil, M.A. Madkour, and M.A. Abdou Application of Exp-function method for nonlinear evolution equations with variable coefficients Phys. Lett. A 369 2007 62 69
    • (2007) Phys. Lett. A , vol.369 , pp. 62-69
    • El-Wakil, S.A.1    Madkour, M.A.2    Abdou, M.A.3
  • 31
    • 60549107352 scopus 로고    scopus 로고
    • New solitary wave and periodic solutions of the foam drainage equation using the exp-function method
    • F. Khanib, S. Hamedi-Nezhad, M.T. Darvishi, and S.-W. Ryua New solitary wave and periodic solutions of the foam drainage equation using the exp-function method Nonlinear Anal. Real World Appl. 10 2009 1904 1911
    • (2009) Nonlinear Anal. Real World Appl. , vol.10 , pp. 1904-1911
    • Khanib, F.1    Hamedi-Nezhad, S.2    Darvishi, M.T.3    Ryua, S.-W.4
  • 32
    • 0007289343 scopus 로고    scopus 로고
    • Darboux transformations for a Lax integrable system in 2 n dimensions
    • W.X. Ma Darboux transformations for a Lax integrable system in 2 n dimensions Lett. Math. Phys. 39 1997 33 49
    • (1997) Lett. Math. Phys. , vol.39 , pp. 33-49
    • Ma, W.X.1
  • 33
    • 77949824181 scopus 로고    scopus 로고
    • Darboux transformation and exact solutions for a three-field lattice equation
    • Am. Inst. Phys., Melville, NY
    • H.Q. Zhao, Z.N. Zhu, Darboux transformation and exact solutions for a three-field lattice equation, in: Nonlinear and Modern Mathematical Physics, AIP Conf. Proc. Vol. 1212, Am. Inst. Phys., Melville, NY, 2010, pp. 162-169.
    • (2010) Nonlinear and Modern Mathematical Physics, AIP Conf. Proc. , vol.1212 , pp. 162-169
    • Zhao, H.Q.1    Zhu, Z.N.2
  • 34
    • 0030829213 scopus 로고    scopus 로고
    • Symbolic methods to construct exact solutions of nonlinear partial differential equations
    • W. Hereman, and A. Nuseir Symbolic methods to construct exact solutions of nonlinear partial differential equations Math. Comput. Simulat. 43 1997 13 27
    • (1997) Math. Comput. Simulat. , vol.43 , pp. 13-27
    • Hereman, W.1    Nuseir, A.2
  • 35
    • 79956085127 scopus 로고    scopus 로고
    • N-soliton solutions for shallow water waves equations in (1+1) and (2+1) dimensions
    • A.M. Wazwaz N-soliton solutions for shallow water waves equations in (1+1) and (2+1) dimensions Appl. Math. Comput. 217 2011 8840 8845
    • (2011) Appl. Math. Comput. , vol.217 , pp. 8840-8845
    • Wazwaz, A.M.1
  • 36
    • 79960022954 scopus 로고    scopus 로고
    • Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations
    • W.X. Ma, and A. Pekcan Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations Z. Naturforsch. A 66 2011 282 377
    • (2011) Z. Naturforsch. A , vol.66 , pp. 282-377
    • Ma, W.X.1    Pekcan, A.2
  • 37
    • 0041335043 scopus 로고
    • Painlevé property, Bäcklund transformation, Lax pair and soliton-like solution for a variable coefficient KP equation
    • Z.N. Zhu Painlevé property, Bäcklund transformation, Lax pair and soliton-like solution for a variable coefficient KP equation Phys. Lett. A 182 1993 277 281
    • (1993) Phys. Lett. A , vol.182 , pp. 277-281
    • Zhu, Z.N.1
  • 38
    • 41649110425 scopus 로고    scopus 로고
    • Decomposition of the generalized KP, cKP and mKP and their exact solutions
    • F.C. You, T.C. Xia, and D.Y. Chen Decomposition of the generalized KP, cKP and mKP and their exact solutions Phys. Lett. A 372 2008 3184 3194
    • (2008) Phys. Lett. A , vol.372 , pp. 3184-3194
    • You, F.C.1    Xia, T.C.2    Chen, D.Y.3
  • 39
    • 72749093282 scopus 로고    scopus 로고
    • Four (2 + 1)-dimensional integrable extensions of the Kadomtsev-Petviashvili equation
    • A.M. Wazwaz Four (2 + 1)-dimensional integrable extensions of the Kadomtsev-Petviashvili equation Appl. Math. Comput. 215 2010 3631 3644
    • (2010) Appl. Math. Comput. , vol.215 , pp. 3631-3644
    • Wazwaz, A.M.1
  • 40
    • 0001247353 scopus 로고
    • A new form of Bäcklund transformations and its relation to the inverse scattering problem
    • R. Hirota A new form of Bäcklund transformations and its relation to the inverse scattering problem Prog. Theor. Phys. 52 1974 1498 1512
    • (1974) Prog. Theor. Phys. , vol.52 , pp. 1498-1512
    • Hirota, R.1
  • 42
    • 84865560041 scopus 로고    scopus 로고
    • A refined invariant subspace method and applications to evolution equations
    • W.X. Ma A refined invariant subspace method and applications to evolution equations Sci. China Math. 2012
    • (2012) Sci. China Math.
    • Ma, W.X.1
  • 43
    • 80052378401 scopus 로고    scopus 로고
    • Multiple-soliton solutions for a (3 + 1) -dimensional generalized KP equation
    • A.M. Wazwaz Multiple-soliton solutions for a (3 + 1) -dimensional generalized KP equation Commun. Nonlinear Sci. Numer. Simulat. 17 2012 491 495
    • (2012) Commun. Nonlinear Sci. Numer. Simulat. , vol.17 , pp. 491-495
    • Wazwaz, A.M.1
  • 44
    • 79959236580 scopus 로고    scopus 로고
    • Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation
    • W.X. Ma, A. Abdeljabbar, and M.G. Asaad Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation Appl. Math. Comput. 217 2001 10016 10023
    • (2001) Appl. Math. Comput. , vol.217 , pp. 10016-10023
    • Ma, W.X.1    Abdeljabbar, A.2    Asaad, M.G.3
  • 46
    • 34548541360 scopus 로고    scopus 로고
    • N-soliton solution and its Wronskian form of a (3 + 1) -dimensional nonlinear evolution equation
    • X.G. Geng, and Y.L. Ma N-soliton solution and its Wronskian form of a (3 + 1) -dimensional nonlinear evolution equation Phys. Lett. A 369 2007 285 289
    • (2007) Phys. Lett. A , vol.369 , pp. 285-289
    • Geng, X.G.1    Ma, Y.L.2
  • 47
    • 67650383727 scopus 로고    scopus 로고
    • A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo-Miwa equation
    • W.X. Ma, and J.-H. Lee A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo-Miwa equation Chaos Solitons Fract. 42 2009 1356 1363
    • (2009) Chaos Solitons Fract. , vol.42 , pp. 1356-1363
    • Ma, W.X.1    Lee, J.-H.2
  • 48
    • 70450235522 scopus 로고    scopus 로고
    • Grammian determinant solution and Pfaffianization for a (3 + 1) -dimensional soliton equation
    • J.P. Wu, and X.G. Geng Grammian determinant solution and Pfaffianization for a (3 + 1) -dimensional soliton equation Commun. Theor. Phys. 52 2009 791 794
    • (2009) Commun. Theor. Phys. , vol.52 , pp. 791-794
    • Wu, J.P.1    Geng, X.G.2
  • 49
    • 33749019106 scopus 로고    scopus 로고
    • Construction of dKP and BKP equations with self-consistent sources
    • X.B. Hu, and H.Y. Wang Construction of dKP and BKP equations with self-consistent sources Inverse Probl. 22 2006 1903 1920
    • (2006) Inverse Probl. , vol.22 , pp. 1903-1920
    • Hu, X.B.1    Wang, H.Y.2
  • 50
    • 84863778030 scopus 로고    scopus 로고
    • Generalized bilinear differential equations
    • W.X. Ma Generalized bilinear differential equations World Appl. Sci. J. 2012
    • (2012) World Appl. Sci. J.
    • Ma, W.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.