-
1
-
-
0002464716
-
Direct methods in soliton theory
-
R.K. Bullough, P.J. Caudrey, Springer Berlin
-
R. Hirota Direct methods in soliton theory R.K. Bullough, P.J. Caudrey, Solitons 1980 Springer Berlin 157 176
-
(1980)
Solitons
, pp. 157-176
-
-
Hirota, R.1
-
3
-
-
78650257685
-
Hirota's bilinear method and soliton solutions
-
J. Hietarinta Hirota's bilinear method and soliton solutions Phys. AUC 15 Part 1 2005 31 37
-
(2005)
Phys. AUC
, vol.15
, Issue.PART 1
, pp. 31-37
-
-
Hietarinta, J.1
-
4
-
-
78149402626
-
A multiple exp-function method for nonlinear differential equations and its application
-
8p
-
W.X. Ma, T.W. Huang, and Y. Zhang A multiple exp-function method for nonlinear differential equations and its application Phys. Scri. 82 2010 065003 (8pp)
-
(2010)
Phys. Scri.
, vol.82
, pp. 065003
-
-
Ma, W.X.1
Huang, T.W.2
Zhang, Y.3
-
5
-
-
84863783374
-
Application of multiple exp-function method to obtain multi-soliton solutions of (2+1)- and (3+1)-dimensional breaking soliton equations
-
M.T. Darvishi1, M. Najafi, and M. Najafi Application of multiple exp-function method to obtain multi-soliton solutions of (2+1)- and (3+1)-dimensional breaking soliton equations Am. J. Comput. Appl. Math. 1 2011 41 47
-
(2011)
Am. J. Comput. Appl. Math.
, vol.1
, pp. 41-47
-
-
Darvishil, M.T.1
Najafi, M.2
Najafi, M.3
-
6
-
-
79651474215
-
Linear superposition principle applying to Hirota bilinear equations
-
W.X. Ma, and E.G. Fan Linear superposition principle applying to Hirota bilinear equations Comput. Math. Appl. 61 2011 950 959
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 950-959
-
-
Ma, W.X.1
Fan, E.G.2
-
7
-
-
84862777329
-
Hirota bilinear equations with linear subspaces of solutions
-
W.X. Ma, Y. Zhang, Y.N. Tang, and J.Y. Tu Hirota bilinear equations with linear subspaces of solutions Appl. Math. Comput. 218 2012 7174 7183
-
(2012)
Appl. Math. Comput.
, vol.218
, pp. 7174-7183
-
-
Ma, W.X.1
Zhang, Y.2
Tang, Y.N.3
Tu, J.Y.4
-
8
-
-
0000293426
-
Resonance of solitons in one dimension
-
R. Hirota, and M. Ito Resonance of solitons in one dimension J. Phys. Soc. Jpn. 52 1983 744 748
-
(1983)
J. Phys. Soc. Jpn.
, vol.52
, pp. 744-748
-
-
Hirota, R.1
Ito, M.2
-
9
-
-
36149031409
-
Exact solutions for two nonlinear equations i
-
H.B. Lan, and K.L. Wang Exact solutions for two nonlinear equations I J. Phys. A Math. Gen. 23 1990 3923 3928
-
(1990)
J. Phys. A Math. Gen.
, vol.23
, pp. 3923-3928
-
-
Lan, H.B.1
Wang, K.L.2
-
10
-
-
0004483962
-
The tanh method I: Exact solutions of nonlinear evolution and wave equations
-
W. Malfliet, and W. Hereman The tanh method I: Exact solutions of nonlinear evolution and wave equations Phys. Scri. 54 1996 563 568
-
(1996)
Phys. Scri.
, vol.54
, pp. 563-568
-
-
Malfliet, W.1
Hereman, W.2
-
11
-
-
0030145528
-
Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation
-
W.X. Ma, and B. Fuchssteiner Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation Int. J. Non-linear Mech. 31 1996 329 338
-
(1996)
Int. J. Non-linear Mech.
, vol.31
, pp. 329-338
-
-
Ma, W.X.1
Fuchssteiner, B.2
-
13
-
-
77956803373
-
Various exact travelling wave solutions for Kundu equation with fifth-order nonlinear term
-
H.Q. Zhang Various exact travelling wave solutions for Kundu equation with fifth-order nonlinear term Rep. Math. Phys. 65 2010 231 239
-
(2010)
Rep. Math. Phys.
, vol.65
, pp. 231-239
-
-
Zhang, H.Q.1
-
14
-
-
56349119467
-
The new tri-function method to multiple exact solutions of nonlinear wave equations
-
5p
-
Z.Y. Yan The new tri-function method to multiple exact solutions of nonlinear wave equations Phys. Scri. 78 2008 035001 (5pp)
-
(2008)
Phys. Scri.
, vol.78
, pp. 035001
-
-
Yan, Z.Y.1
-
15
-
-
37549033511
-
G ′G) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
-
G ′G) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics Phys. Lett. A 372 2008 417 423
-
(2008)
Phys. Lett. A
, vol.372
, pp. 417-423
-
-
Wang, M.L.1
Li, X.Z.2
Zhang, J.L.3
-
16
-
-
59349118015
-
G ′ / G) -expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics
-
12p
-
G ′ / G) -expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics J. Math. Phys. 50 2009 013502 (12pp)
-
(2009)
J. Math. Phys.
, vol.50
, pp. 013502
-
-
Zayed, E.M.E.1
Gepreel, K.A.2
-
17
-
-
0037136277
-
Complexiton solutions to the Korteweg-de Vries equation
-
W.X. Ma Complexiton solutions to the Korteweg-de Vries equation Phys. Lett. A 301 2002 35 44
-
(2002)
Phys. Lett. A
, vol.301
, pp. 35-44
-
-
Ma, W.X.1
-
18
-
-
4544353887
-
Complexiton solutions of the Toda lattice equation
-
W.X. Ma, and K. Maruno Complexiton solutions of the Toda lattice equation Phys. A 343 2004 219 237
-
(2004)
Phys. A
, vol.343
, pp. 219-237
-
-
Ma, W.X.1
Maruno, K.2
-
19
-
-
0842290212
-
Soliton, positon and negaton solutions to a Schrödinger self-consistent source equation
-
W.X. Ma Soliton, positon and negaton solutions to a Schrödinger self-consistent source equation J. Phys. Soc. Jpn. 72 2003 3017 3019
-
(2003)
J. Phys. Soc. Jpn.
, vol.72
, pp. 3017-3019
-
-
Ma, W.X.1
-
20
-
-
20444439142
-
Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources
-
W.X. Ma Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources Chaos Solitons Fract. 26 2005 1453 1458
-
(2005)
Chaos Solitons Fract.
, vol.26
, pp. 1453-1458
-
-
Ma, W.X.1
-
21
-
-
18144382273
-
Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions
-
W.X. Ma, and Y. You Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions Trans. Am. Math. Soc. 357 2005 1753 1778
-
(2005)
Trans. Am. Math. Soc.
, vol.357
, pp. 1753-1778
-
-
Ma, W.X.1
You, Y.2
-
22
-
-
63449113626
-
A second Wronskian formulation of the Boussinesq equation
-
W.X. Ma, C.X. Li, and J.S. He A second Wronskian formulation of the Boussinesq equation Nonlinear Anal. 70 2009 4245 4258
-
(2009)
Nonlinear Anal.
, vol.70
, pp. 4245-4258
-
-
Ma, W.X.1
Li, C.X.2
He, J.S.3
-
23
-
-
33947640521
-
Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons
-
C.X. Li, W.X. Ma, X.J. Liu, and Y.B. Zeng Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons Inverse Probl. 23 2007 279 296
-
(2007)
Inverse Probl.
, vol.23
, pp. 279-296
-
-
Li, C.X.1
Ma, W.X.2
Liu, X.J.3
Zeng, Y.B.4
-
24
-
-
50949109194
-
An application of the Casoratian technique to the 2D Toda lattice equation
-
W.X. Ma An application of the Casoratian technique to the 2D Toda lattice equation Mod. Phys. Lett. B 22 2008 1815 1825
-
(2008)
Mod. Phys. Lett. B
, vol.22
, pp. 1815-1825
-
-
Ma, W.X.1
-
25
-
-
0000266051
-
Soliton solutions to the BKP equations - I. The Pfaffian technique
-
R. Hirota Soliton solutions to the BKP equations - I. The Pfaffian technique J. Phys. Soc. Jpn. 58 1989 2285 2296
-
(1989)
J. Phys. Soc. Jpn.
, vol.58
, pp. 2285-2296
-
-
Hirota, R.1
-
26
-
-
70349172982
-
Extended Gram-type determinant solutions to the Kadomtsev-Petviashvili equation
-
G.F. Yu, and X.B. Hu Extended Gram-type determinant solutions to the Kadomtsev-Petviashvili equation Math. Comput. Simulat. 80 2009 184 191
-
(2009)
Math. Comput. Simulat.
, vol.80
, pp. 184-191
-
-
Yu, G.F.1
Hu, X.B.2
-
27
-
-
63449123795
-
Seven common errors in finding exact solutions of nonlinear differential equations
-
N.A. Kudryashov Seven common errors in finding exact solutions of nonlinear differential equations Commun. Nonlinear Sci. Numer. Simulat. 14 2009 3507 3529
-
(2009)
Commun. Nonlinear Sci. Numer. Simulat.
, vol.14
, pp. 3507-3529
-
-
Kudryashov, N.A.1
-
28
-
-
79951580830
-
Comment on the 3 + 1 dimensional Kadomtsev-Petviashvili equations
-
W.X. Ma Comment on the 3 + 1 dimensional Kadomtsev-Petviashvili equations Commun. Nonlinear Sci. Numer. Simulat. 16 2011 2663 2666
-
(2011)
Commun. Nonlinear Sci. Numer. Simulat.
, vol.16
, pp. 2663-2666
-
-
Ma, W.X.1
-
29
-
-
33745177020
-
Exp-function method for nonlinear wave equations
-
J.H. He, and H.X. Wu Exp-function method for nonlinear wave equations Chaos Solitons Fract. 30 2006 700 708
-
(2006)
Chaos Solitons Fract.
, vol.30
, pp. 700-708
-
-
He, J.H.1
Wu, H.X.2
-
30
-
-
34548246435
-
Application of Exp-function method for nonlinear evolution equations with variable coefficients
-
S.A. El-Wakil, M.A. Madkour, and M.A. Abdou Application of Exp-function method for nonlinear evolution equations with variable coefficients Phys. Lett. A 369 2007 62 69
-
(2007)
Phys. Lett. A
, vol.369
, pp. 62-69
-
-
El-Wakil, S.A.1
Madkour, M.A.2
Abdou, M.A.3
-
31
-
-
60549107352
-
New solitary wave and periodic solutions of the foam drainage equation using the exp-function method
-
F. Khanib, S. Hamedi-Nezhad, M.T. Darvishi, and S.-W. Ryua New solitary wave and periodic solutions of the foam drainage equation using the exp-function method Nonlinear Anal. Real World Appl. 10 2009 1904 1911
-
(2009)
Nonlinear Anal. Real World Appl.
, vol.10
, pp. 1904-1911
-
-
Khanib, F.1
Hamedi-Nezhad, S.2
Darvishi, M.T.3
Ryua, S.-W.4
-
32
-
-
0007289343
-
Darboux transformations for a Lax integrable system in 2 n dimensions
-
W.X. Ma Darboux transformations for a Lax integrable system in 2 n dimensions Lett. Math. Phys. 39 1997 33 49
-
(1997)
Lett. Math. Phys.
, vol.39
, pp. 33-49
-
-
Ma, W.X.1
-
33
-
-
77949824181
-
Darboux transformation and exact solutions for a three-field lattice equation
-
Am. Inst. Phys., Melville, NY
-
H.Q. Zhao, Z.N. Zhu, Darboux transformation and exact solutions for a three-field lattice equation, in: Nonlinear and Modern Mathematical Physics, AIP Conf. Proc. Vol. 1212, Am. Inst. Phys., Melville, NY, 2010, pp. 162-169.
-
(2010)
Nonlinear and Modern Mathematical Physics, AIP Conf. Proc.
, vol.1212
, pp. 162-169
-
-
Zhao, H.Q.1
Zhu, Z.N.2
-
34
-
-
0030829213
-
Symbolic methods to construct exact solutions of nonlinear partial differential equations
-
W. Hereman, and A. Nuseir Symbolic methods to construct exact solutions of nonlinear partial differential equations Math. Comput. Simulat. 43 1997 13 27
-
(1997)
Math. Comput. Simulat.
, vol.43
, pp. 13-27
-
-
Hereman, W.1
Nuseir, A.2
-
35
-
-
79956085127
-
N-soliton solutions for shallow water waves equations in (1+1) and (2+1) dimensions
-
A.M. Wazwaz N-soliton solutions for shallow water waves equations in (1+1) and (2+1) dimensions Appl. Math. Comput. 217 2011 8840 8845
-
(2011)
Appl. Math. Comput.
, vol.217
, pp. 8840-8845
-
-
Wazwaz, A.M.1
-
36
-
-
79960022954
-
Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations
-
W.X. Ma, and A. Pekcan Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations Z. Naturforsch. A 66 2011 282 377
-
(2011)
Z. Naturforsch. A
, vol.66
, pp. 282-377
-
-
Ma, W.X.1
Pekcan, A.2
-
37
-
-
0041335043
-
Painlevé property, Bäcklund transformation, Lax pair and soliton-like solution for a variable coefficient KP equation
-
Z.N. Zhu Painlevé property, Bäcklund transformation, Lax pair and soliton-like solution for a variable coefficient KP equation Phys. Lett. A 182 1993 277 281
-
(1993)
Phys. Lett. A
, vol.182
, pp. 277-281
-
-
Zhu, Z.N.1
-
38
-
-
41649110425
-
Decomposition of the generalized KP, cKP and mKP and their exact solutions
-
F.C. You, T.C. Xia, and D.Y. Chen Decomposition of the generalized KP, cKP and mKP and their exact solutions Phys. Lett. A 372 2008 3184 3194
-
(2008)
Phys. Lett. A
, vol.372
, pp. 3184-3194
-
-
You, F.C.1
Xia, T.C.2
Chen, D.Y.3
-
39
-
-
72749093282
-
Four (2 + 1)-dimensional integrable extensions of the Kadomtsev-Petviashvili equation
-
A.M. Wazwaz Four (2 + 1)-dimensional integrable extensions of the Kadomtsev-Petviashvili equation Appl. Math. Comput. 215 2010 3631 3644
-
(2010)
Appl. Math. Comput.
, vol.215
, pp. 3631-3644
-
-
Wazwaz, A.M.1
-
40
-
-
0001247353
-
A new form of Bäcklund transformations and its relation to the inverse scattering problem
-
R. Hirota A new form of Bäcklund transformations and its relation to the inverse scattering problem Prog. Theor. Phys. 52 1974 1498 1512
-
(1974)
Prog. Theor. Phys.
, vol.52
, pp. 1498-1512
-
-
Hirota, R.1
-
42
-
-
84865560041
-
A refined invariant subspace method and applications to evolution equations
-
W.X. Ma A refined invariant subspace method and applications to evolution equations Sci. China Math. 2012
-
(2012)
Sci. China Math.
-
-
Ma, W.X.1
-
43
-
-
80052378401
-
Multiple-soliton solutions for a (3 + 1) -dimensional generalized KP equation
-
A.M. Wazwaz Multiple-soliton solutions for a (3 + 1) -dimensional generalized KP equation Commun. Nonlinear Sci. Numer. Simulat. 17 2012 491 495
-
(2012)
Commun. Nonlinear Sci. Numer. Simulat.
, vol.17
, pp. 491-495
-
-
Wazwaz, A.M.1
-
44
-
-
79959236580
-
Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation
-
W.X. Ma, A. Abdeljabbar, and M.G. Asaad Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation Appl. Math. Comput. 217 2001 10016 10023
-
(2001)
Appl. Math. Comput.
, vol.217
, pp. 10016-10023
-
-
Ma, W.X.1
Abdeljabbar, A.2
Asaad, M.G.3
-
46
-
-
34548541360
-
N-soliton solution and its Wronskian form of a (3 + 1) -dimensional nonlinear evolution equation
-
X.G. Geng, and Y.L. Ma N-soliton solution and its Wronskian form of a (3 + 1) -dimensional nonlinear evolution equation Phys. Lett. A 369 2007 285 289
-
(2007)
Phys. Lett. A
, vol.369
, pp. 285-289
-
-
Geng, X.G.1
Ma, Y.L.2
-
47
-
-
67650383727
-
A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo-Miwa equation
-
W.X. Ma, and J.-H. Lee A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo-Miwa equation Chaos Solitons Fract. 42 2009 1356 1363
-
(2009)
Chaos Solitons Fract.
, vol.42
, pp. 1356-1363
-
-
Ma, W.X.1
Lee, J.-H.2
-
48
-
-
70450235522
-
Grammian determinant solution and Pfaffianization for a (3 + 1) -dimensional soliton equation
-
J.P. Wu, and X.G. Geng Grammian determinant solution and Pfaffianization for a (3 + 1) -dimensional soliton equation Commun. Theor. Phys. 52 2009 791 794
-
(2009)
Commun. Theor. Phys.
, vol.52
, pp. 791-794
-
-
Wu, J.P.1
Geng, X.G.2
-
49
-
-
33749019106
-
Construction of dKP and BKP equations with self-consistent sources
-
X.B. Hu, and H.Y. Wang Construction of dKP and BKP equations with self-consistent sources Inverse Probl. 22 2006 1903 1920
-
(2006)
Inverse Probl.
, vol.22
, pp. 1903-1920
-
-
Hu, X.B.1
Wang, H.Y.2
-
50
-
-
84863778030
-
Generalized bilinear differential equations
-
W.X. Ma Generalized bilinear differential equations World Appl. Sci. J. 2012
-
(2012)
World Appl. Sci. J.
-
-
Ma, W.X.1
|