메뉴 건너뛰기




Volumn 22, Issue 2, 2004, Pages 395-406

Rational solutions of the Toda lattice equation in Casoratian form

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; FUNCTIONS; INTEGRAL EQUATIONS; LATTICE CONSTANTS; MATHEMATICAL OPERATORS; MATHEMATICAL TRANSFORMATIONS; POLYNOMIALS; SOLITONS;

EID: 1842842984     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chaos.2004.02.011     Document Type: Article
Times cited : (147)

References (26)
  • 1
    • 84911743709 scopus 로고
    • Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem
    • Airault H., McKean H.P., Moser J. Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Commun. Pure Appl. Math. 30:1977;95-148.
    • (1977) Commun. Pure Appl. Math. , vol.30 , pp. 95-148
    • Airault, H.1    McKean, H.P.2    Moser, J.3
  • 2
    • 34250282189 scopus 로고
    • On a class of polynomials connected with the Korteweg-de Vries equation
    • Adler M., Moser J. On a class of polynomials connected with the Korteweg-de Vries equation. Commun. Math. Phys. 61:1978;1-30.
    • (1978) Commun. Math. Phys. , vol.61 , pp. 1-30
    • Adler, M.1    Moser, J.2
  • 3
    • 20244379801 scopus 로고
    • Similarity, Bäcklund transformations and rational solutions
    • Strampp W., Oevel W., Steeb W.-H. Similarity, Bäcklund transformations and rational solutions. Lett. Math. Phys. 7:1983;445-452.
    • (1983) Lett. Math. Phys. , vol.7 , pp. 445-452
    • Strampp, W.1    Oevel, W.2    Steeb, W.-H.3
  • 4
    • 0040002590 scopus 로고
    • Rational KP and mKP-solutions in Wronskian form
    • Gesztesy F., Schweiger W. Rational KP and mKP-solutions in Wronskian form. Rep. Math. Phys. 30:1991;205-222.
    • (1991) Rep. Math. Phys. , vol.30 , pp. 205-222
    • Gesztesy, F.1    Schweiger, W.2
  • 5
    • 36749108920 scopus 로고
    • Solitons and rational solutions of nonlinear evolution equations
    • Ablowitz M.J., Satsuma J. Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19:1978;2180-2186.
    • (1978) J. Math. Phys. , vol.19 , pp. 2180-2186
    • Ablowitz, M.J.1    Satsuma, J.2
  • 6
    • 27644471908 scopus 로고
    • Vibration of a chain with nonlinear interaction
    • Toda M. Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22:1967;431-436.
    • (1967) J. Phys. Soc. Jpn. , vol.22 , pp. 431-436
    • Toda, M.1
  • 7
    • 0040304547 scopus 로고    scopus 로고
    • On a class of rational and mixed soliton-rational solutions of the Toda lattice
    • Cârstea A.S., Grecu D. On a class of rational and mixed soliton-rational solutions of the Toda lattice. Prog. Theoret. Phys. 96:1996;29-36.
    • (1996) Prog. Theoret. Phys. , vol.96 , pp. 29-36
    • Cârstea, A.S.1    Grecu, D.2
  • 8
    • 0032364723 scopus 로고    scopus 로고
    • Solutions for the Mikhailov-Shabat-Yamilov difference-differential equations and generalized solutions for the Volterra and the Toda lattice equations
    • Narita K. Solutions for the Mikhailov-Shabat-Yamilov difference- differential equations and generalized solutions for the Volterra and the Toda lattice equations. Prog. Theoret. Phys. 99:1998;337-348.
    • (1998) Prog. Theoret. Phys. , vol.99 , pp. 337-348
    • Narita, K.1
  • 9
    • 0038086927 scopus 로고
    • Rational solutions of the Korteweg-de Vries equation in Wronskian form
    • Nimmo J.J.C., Freeman N.C. Rational solutions of the Korteweg-de Vries equation in Wronskian form. Phys. Lett. A. 96:1983;443-446.
    • (1983) Phys. Lett. A , vol.96 , pp. 443-446
    • Nimmo, J.J.C.1    Freeman, N.C.2
  • 10
    • 0012754943 scopus 로고
    • Modified equations, rational solutions, and the Painlevé property for the Kadomtsev-Petviashvili and Hirota-Satsuma equations
    • Weiss J. Modified equations, rational solutions, and the Painlevé property for the Kadomtsev-Petviashvili and Hirota-Satsuma equations. J. Math. Phys. 26:1985;2174-2180.
    • (1985) J. Math. Phys. , vol.26 , pp. 2174-2180
    • Weiss, J.1
  • 11
    • 21844496647 scopus 로고
    • Rational solutions of a differential-difference KdV equation, the Toda equation and the discrete KdV equation
    • Hu X.B., Clarkson P.A. Rational solutions of a differential-difference KdV equation, the Toda equation and the discrete KdV equation. J. Phys. A: Math. Gen. 28:1995;5009-5016.
    • (1995) J. Phys. A: Math. Gen. , vol.28 , pp. 5009-5016
    • Hu, X.B.1    Clarkson, P.A.2
  • 12
    • 0035417817 scopus 로고    scopus 로고
    • Rational solutions of the KP equation through symmetry reductions: Coherent structures and other solutions
    • Medina E., Marín M.J. Rational solutions of the KP equation through symmetry reductions: coherent structures and other solutions. Inverse Problems. 17:2001;985-998.
    • (2001) Inverse Problems , vol.17 , pp. 985-998
    • Medina, E.1    Marín, M.J.2
  • 13
    • 0038929729 scopus 로고
    • Soliton solution of three differential-difference equations in Wronskian form
    • Nimmo J.J.C. Soliton solution of three differential-difference equations in Wronskian form. Phys. Lett. A. 99:1983;281-286.
    • (1983) Phys. Lett. A , vol.99 , pp. 281-286
    • Nimmo, J.J.C.1
  • 14
    • 0032544446 scopus 로고    scopus 로고
    • Wronskian and rational solutions of the differential-difference KP equation
    • Tamizhmani T., Kanaga Vel S., Tamizhmani K.M. Wronskian and rational solutions of the differential-difference KP equation. J. Phys. A: Math. Gen. 31:1998;7627-7633.
    • (1998) J. Phys. A: Math. Gen. , vol.31 , pp. 7627-7633
    • Tamizhmani, T.1    Kanaga Vel, S.2    Tamizhmani, K.M.3
  • 15
    • 0037136277 scopus 로고    scopus 로고
    • Complexiton solutions to the Korteweg-de Vries equation
    • Ma W.X. Complexiton solutions to the Korteweg-de Vries equation. Phys. Lett. A. 301:2002;35-44.
    • (2002) Phys. Lett. A , vol.301 , pp. 35-44
    • Ma, W.X.1
  • 17
    • 0038061655 scopus 로고    scopus 로고
    • Mixed rational-soliton solutions of two differential-difference equations in Casorati determinant form
    • Wu H., Zhang D.J. Mixed rational-soliton solutions of two differential-difference equations in Casorati determinant form. J. Phys. A: Math. Gen. 36:2003;4867-4873.
    • (2003) J. Phys. A: Math. Gen. , vol.36 , pp. 4867-4873
    • Wu, H.1    Zhang, D.J.2
  • 19
    • 0001935348 scopus 로고
    • A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice
    • Hirota R., Satsuma J. A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Prog. Theoret. Phys. Suppl. (59):1976;64-100.
    • (1976) Prog. Theoret. Phys. Suppl. , Issue.59 , pp. 64-100
    • Hirota, R.1    Satsuma, J.2
  • 23
    • 0039522386 scopus 로고
    • On solutions of the Korteweg-de Vries equation
    • Ablowitz M.J., Cornille H. On solutions of the Korteweg-de Vries equation. Phys. Lett. A. 72:1979;277-280.
    • (1979) Phys. Lett. A , vol.72 , pp. 277-280
    • Ablowitz, M.J.1    Cornille, H.2
  • 24
    • 21844511881 scopus 로고
    • Positons for the Toda lattice and related spectral problems
    • Stahlhofen A.A., Matveev V.B. Positons for the Toda lattice and related spectral problems. J. Phys. A: Math. Gen. 28:1995;1957-1965.
    • (1995) J. Phys. A: Math. Gen. , vol.28 , pp. 1957-1965
    • Stahlhofen, A.A.1    Matveev, V.B.2
  • 25
    • 0041595990 scopus 로고    scopus 로고
    • q-Painlevé systems arising from q-KP hierarchy
    • Kajiwara K., Noumi M., Yamada Y. q -Painlevé systems arising from q-KP hierarchy Lett. Math. Phys. 62:2002;259-268.
    • (2002) Lett. Math. Phys. , vol.62 , pp. 259-268
    • Kajiwara, K.1    Noumi, M.2    Yamada, Y.3
  • 26
    • 0242340416 scopus 로고    scopus 로고
    • The second Painlevé equation, its hierarchy and associated special polynomials
    • Clarkson P.A., Mansfield E.L. The second Painlevé equation, its hierarchy and associated special polynomials. Nonlinearity. 16:2003;R1-R26.
    • (2003) Nonlinearity , vol.16
    • Clarkson, P.A.1    Mansfield, E.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.