-
1
-
-
84867800614
-
Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield
-
Larson, T. A., Joshi, P. P. & Sokolov, K. Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield. ACS Nano 6, 9182-9190, doi:10.1021/nn3035155 (2012).
-
(2012)
ACS Nano
, vol.6
, pp. 9182-9190
-
-
Larson, T.A.1
Joshi, P.P.2
Sokolov, K.3
-
2
-
-
49449105371
-
Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer
-
Cheng, Y. et al. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 130, 10643-10647, doi:10.1021/ja801631c (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 10643-10647
-
-
Cheng, Y.1
-
3
-
-
35048826817
-
Paclitaxel-functionalized gold nanoparticles
-
Gibson, J. D., Khanal, B. P. & Zubarev, E. R. Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc. 129, 11653-11661, doi:10.1021/ja075181k (2007).
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 11653-11661
-
-
Gibson, J.D.1
Khanal, B.P.2
Zubarev, E.R.3
-
4
-
-
45849139679
-
Plasmonic photothermal therapy (PPTT) using gold nanoparticles
-
Huang, X. H., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser. Med. Sci. 23, 217-228, doi:10.1007/s10103-007-0470-x (2008).
-
(2008)
Laser. Med. Sci.
, vol.23
, pp. 217-228
-
-
Huang, X.H.1
Jain, P.K.2
El-Sayed, I.H.3
El-Sayed, M.A.4
-
5
-
-
77955542791
-
Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer
-
Kim, D., Jeong, Y. Y. & Jon, S. A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS Nano 4, 3689-3696, doi:10.1021/nn901877h (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 3689-3696
-
-
Kim, D.1
Jeong, Y.Y.2
Jon, S.A.3
-
6
-
-
68949093909
-
Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer
-
Mallidi, S. et al. Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer. Nano Lett. 9, 2825-2831, doi:10.1021/nl802929u (2009).
-
(2009)
Nano Lett.
, vol.9
, pp. 2825-2831
-
-
Mallidi, S.1
-
7
-
-
61649105001
-
Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer
-
Popovtzer, R. et al. Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano Lett. 8, 4593-4596, doi:10.1021/nl8029114 (2008).
-
(2008)
Nano Lett.
, vol.8
, pp. 4593-4596
-
-
Popovtzer, R.1
-
8
-
-
32544436574
-
Nano-oncology: Drug delivery, imaging, and sensing
-
Portney, N. G. & Ozkan, M. Nano-oncology: drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 384, 620-630, doi:10.1007/s00216-005-0247-7 (2006).
-
(2006)
Anal. Bioanal. Chem.
, vol.384
, pp. 620-630
-
-
Portney, N.G.1
Ozkan, M.2
-
9
-
-
33646590588
-
Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery
-
Visaria, R. K. et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol. Cancer Ther. 5, 1014-1020, doi:10.1158/1535-7163.mct-05-0381 (2006).
-
(2006)
Mol. Cancer Ther.
, vol.5
, pp. 1014-1020
-
-
Visaria, R.K.1
-
10
-
-
0345686712
-
Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
-
Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100, 13549-13554, doi:10.1073/pnas.2232479100 (2003).
-
(2003)
PNAS
, vol.100
, pp. 13549-13554
-
-
Hirsch, L.R.1
-
11
-
-
33846670191
-
Au nanoparticles target cancer
-
Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2, 18-29, doi:10.1016/s1748-0132(07)70016-6 (2007).
-
(2007)
Nano Today
, vol.2
, pp. 18-29
-
-
Jain, P.K.1
El-Sayed, I.H.2
El-Sayed, M.A.3
-
12
-
-
84892517662
-
Multifunctional Plasmonic Nanorattles for Spectrum-Guided Locoregional Therapy
-
Gandra, N., Portz, C. & Singamaneni, S. Multifunctional Plasmonic Nanorattles for Spectrum-Guided Locoregional Therapy. Adv. Mater. 26, 424-429, doi:10.1002/adma.201302803 (2013).
-
(2013)
Adv. Mater.
, vol.26
, pp. 424-429
-
-
Gandra, N.1
Portz, C.2
Singamaneni, S.3
-
13
-
-
84874061868
-
Bilayered Raman-Intense Gold Nanostructures with Hidden Tags (BRIGHTs) for High-Resolution Bioimaging
-
Gandra, N. & Singamaneni, S. Bilayered Raman-Intense Gold Nanostructures with Hidden Tags (BRIGHTs) for High-Resolution Bioimaging. Adv. Mater. 25, 1022-1027, doi:10.1002/adma.201203415 (2013).
-
(2013)
Adv. Mater.
, vol.25
, pp. 1022-1027
-
-
Gandra, N.1
Singamaneni, S.2
-
14
-
-
84879982164
-
Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes
-
Gao, W. et al. Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. Adv. Mater. 25, 3549-3553, doi:10.1002/adma.201300638 (2013).
-
(2013)
Adv. Mater.
, vol.25
, pp. 3549-3553
-
-
Gao, W.1
-
15
-
-
84874169973
-
Minimal "Self " Peptides That Inhibit Phagocytic Clearance and Enhance Delivery of Nanoparticles
-
Rodriguez, P. L. et al. Minimal "Self " Peptides That Inhibit Phagocytic Clearance and Enhance Delivery of Nanoparticles. Science 339, 971-975, doi:10.1126/science.1229568 (2013).
-
(2013)
Science
, vol.339
, pp. 971-975
-
-
Rodriguez, P.L.1
-
16
-
-
11144336676
-
Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: An open-label, single-dose study
-
Mross, K. et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother. Pharmacol. 54, 514-524, doi:10.1007/s00280-004-0825-y (2004).
-
(2004)
Cancer Chemother. Pharmacol.
, vol.54
, pp. 514-524
-
-
Mross, K.1
-
17
-
-
0026714331
-
The Anthracyclines - Will We Ever Find a Better Doxrubicin
-
Weiss, R. B. The Anthracyclines - Will We Ever Find a Better Doxrubicin. Seminars in Oncology 19, 670-686 (1992).
-
(1992)
Seminars in Oncology
, vol.19
, pp. 670-686
-
-
Weiss, R.B.1
-
18
-
-
40949127319
-
Therapeutic nanoparticles for drug delivery in cancer
-
Cho, K. J., Wang, X., Nie, S. M., Chen, Z. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310-1316, doi:10.1158/1078-0432.ccr-07-1441 (2008).
-
(2008)
Clin. Cancer Res.
, vol.14
, pp. 1310-1316
-
-
Cho, K.J.1
Wang, X.2
Nie, S.M.3
Chen, Z.4
Shin, D.M.5
-
19
-
-
0034000453
-
Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review
-
Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271-284, doi:10.1016/s0168-3659(99)00248-5 (2000).
-
(2000)
J. Control. Release
, vol.65
, pp. 271-284
-
-
Maeda, H.1
Wu, J.2
Sawa, T.3
Matsumura, Y.4
Hori, K.5
-
20
-
-
0034993240
-
The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting
-
Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation 41, 189-207, doi:http://dx.doi.org/10.1016/S0065-2571(00)00013-3 (2001).
-
(2001)
Advances in Enzyme Regulation
, vol.41
, pp. 189-207
-
-
Maeda, H.1
-
21
-
-
26944452043
-
PEGylation, successful approach to drug delivery
-
Veronese, F. M. & Pasut, G. PEGylation, successful approach to drug delivery. Drug Discovery Today 10, 1451-1458, doi:10.1016/s1359-6446(05)03575-0 (2005).
-
(2005)
Drug Discovery Today
, vol.10
, pp. 1451-1458
-
-
Veronese, F.M.1
Pasut, G.2
-
22
-
-
0032713936
-
Direct Comparison of Liposomal Doxorubicin with or without Polyethylene Glycol Coating in C-26 Tumor-bearing Mice: Is Surface Coating with Polyethylene Glycol Beneficial?
-
Hong, R.-L. et al. Direct Comparison of Liposomal Doxorubicin with or without Polyethylene Glycol Coating in C-26 Tumor-bearing Mice: Is Surface Coating with Polyethylene Glycol Beneficial? Clin. Cancer Res. 5, 3645-3652 (1999).
-
(1999)
Clin. Cancer Res.
, vol.5
, pp. 3645-3652
-
-
Hong, R.-L.1
-
23
-
-
33745907967
-
A cancer drug shows promise, at a price that many can't pay
-
Berenson, A. A cancer drug shows promise, at a price that many can't pay. New York Times 15, 2618-2622 (2006).
-
(2006)
New York Times
, vol.15
, pp. 2618-2622
-
-
Berenson, A.1
-
24
-
-
33745920511
-
The costs of caring: Who pays? Who profits? Who panders?
-
Fleck, L. M. The costs of caring: Who pays? Who profits? Who panders? Hastings Center Report 36, 13-17 (2006).
-
(2006)
Hastings Center Report
, vol.36
, pp. 13-17
-
-
Fleck, L.M.1
-
25
-
-
84869103855
-
Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities
-
Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities. Science 338, 903-910, doi:10.1126/science.1226338 (2012).
-
(2012)
Science
, vol.338
, pp. 903-910
-
-
Cheng, Z.1
Al Zaki, A.2
Hui, J.Z.3
Muzykantov, V.R.4
Tsourkas, A.5
-
26
-
-
67649491055
-
Understanding biophysicochemical interactions at the nano-bio interface
-
Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543-557 (2009).
-
(2009)
Nat. Mater.
, vol.8
, pp. 543-557
-
-
Nel, A.E.1
-
27
-
-
62749111307
-
Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor
-
Yang, R. et al. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int. J. Pharm. 371, 142-147, doi:http://dx.doi.org/10.1016/j.ijpharm.2008.12.007 (2009).
-
(2009)
Int. J. Pharm.
, vol.371
, pp. 142-147
-
-
Yang, R.1
-
28
-
-
84880788067
-
Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior
-
Liu, X. et al. Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior. ACS Nano 7, 6244-6257, doi:10.1021/nn402201w (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 6244-6257
-
-
Liu, X.1
-
29
-
-
1842538730
-
Polysaccharides for Colon Targeted Drug Delivery
-
Chourasia, M. K. & Jain, S. K. Polysaccharides for Colon Targeted Drug Delivery. Drug Delivery 11, 129-148, doi:10.1080/10717540490280778 (2004).
-
(2004)
Drug Delivery
, vol.11
, pp. 129-148
-
-
Chourasia, M.K.1
Jain, S.K.2
-
30
-
-
67651183769
-
Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide
-
Chen, H., Ahn, R., Van den Bossche, J., Thompson, D. H. & O'Halloran, T. V. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol. Cancer Ther. 8, 1955-1963, doi:10.1158/1535-7163.MCT-09-0045 (2009).
-
(2009)
Mol. Cancer Ther.
, vol.8
, pp. 1955-1963
-
-
Chen, H.1
Ahn, R.2
Van Den Bossche, J.3
Thompson, D.H.4
O'Halloran, T.V.5
-
31
-
-
84901773165
-
Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy
-
Chen, F. et al. Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy. Sci. Rep. 4, doi:10.1038/srep05080 http://www.nature.com/srep/2014/140530/srep05080/abs/srep05080.html (2014).
-
(2014)
Sci. Rep.
, vol.4
-
-
Chen, F.1
-
32
-
-
84892514307
-
25th Anniversary Article: Interfacing Nanoparticles and Biology: New Strategies for Biomedicine
-
Tonga, G. Y., Saha, K. & Rotello, V. M. 25th Anniversary Article: Interfacing Nanoparticles and Biology: New Strategies for Biomedicine. Adv. Mater. 26, 359-370, doi:10.1002/adma.201303001 (2014).
-
(2014)
Adv. Mater.
, vol.26
, pp. 359-370
-
-
Tonga, G.Y.1
Saha, K.2
Rotello, V.M.3
|