메뉴 건너뛰기




Volumn 40, Issue 2, 2014, Pages 211-230

Fractional hot deck imputation for robust inference under item nonresponse in survey sampling

Author keywords

EM algorithm; Kullback Leibler information; Missing at random (MAR); Multiple imputation

Indexed keywords


EID: 84929238660     PISSN: 07140045     EISSN: 14920921     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (29)
  • 1
    • 0001646484 scopus 로고
    • Cox's regression model for counting process: A large sample study
    • Andersen, P.K. and Gill, R.D. (1982). Cox's regression model for counting process: a large sample study. The Annals of Statistics, 10, 1100-1120.
    • (1982) The Annals of Statistics , vol.10 , pp. 1100-1120
    • Andersen, P.K.1    Gill, R.D.2
  • 2
    • 77955807436 scopus 로고    scopus 로고
    • A review of hot deck imputation for survey non-response
    • Andridge, R.R. and Little, R.J. (2010). A review of hot deck imputation for survey non-response. International Statistical Review, 78, 40-64.
    • (2010) International Statistical Review , vol.78 , pp. 40-64
    • Andridge, R.R.1    Little, R.J.2
  • 3
    • 74049116631 scopus 로고    scopus 로고
    • Variance estimation when donor imputation is used to fill in missing values
    • Beaumont, J.F. and Bocci, C. (2009). Variance estimation when donor imputation is used to fill in missing values. Canadian Journal of Statistics, 37, 400-416.
    • (2009) Canadian Journal of Statistics , vol.37 , pp. 400-416
    • Beaumont, J.F.1    Bocci, C.2
  • 4
    • 21844525683 scopus 로고
    • Use of estimating functions for estimation from complex surveys
    • Binder, D. and Patak, Z. (1994). Use of estimating functions for estimation from complex surveys. Journal of the American Statistical Association, 89, 1035-1043.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1035-1043
    • Binder, D.1    Patak, Z.2
  • 5
    • 79957818348 scopus 로고    scopus 로고
    • On balanced random imputation in surveys
    • Chauvet, G., Deville, J.-C. and Haziza, D. (2011). On balanced random imputation in surveys. Biometrika, 98, 459-471.
    • (2011) Biometrika , vol.98 , pp. 459-471
    • Chauvet, G.1    Deville, J.-C.2    Haziza, D.3
  • 6
    • 1842665177 scopus 로고    scopus 로고
    • Jackknife variance estimation for nearest neighbor imputation
    • Chen, J. and Shao, J. (2001). Jackknife variance estimation for nearest neighbor imputation. Journal of the American Statistical Association, 96, 260-269.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 260-269
    • Chen, J.1    Shao, J.2
  • 8
    • 77950753460 scopus 로고    scopus 로고
    • Imputation methods for handling item-nonresponse in practice: Methodological issues and recent debates
    • Durrant, G.B. (2009). Imputation methods for handling item-nonresponse in practice: methodological issues and recent debates. International Journal of Social Research Methodology, 12, 293-304.
    • (2009) International Journal of Social Research Methodology , vol.12 , pp. 293-304
    • Durrant, G.B.1
  • 9
    • 71249162685 scopus 로고    scopus 로고
    • Some design properties of a rejective sampling procedure
    • Fuller, W.A. (2009). Some design properties of a rejective sampling procedure. Biometrika, 96, 933-944.
    • (2009) Biometrika , vol.96 , pp. 933-944
    • Fuller, W.A.1
  • 10
    • 33646712883 scopus 로고    scopus 로고
    • Hot deck imputation for the response model
    • Fuller, W.A. and Kim, J.K. (2005). Hot deck imputation for the response model. Survey Methodology, 31, 139-149.
    • (2005) Survey Methodology , vol.31 , pp. 139-149
    • Fuller, W.A.1    Kim, J.K.2
  • 11
    • 85008777613 scopus 로고    scopus 로고
    • Imputation and inference in the presence of missing data
    • Haziza, D. (2009). Imputation and inference in the presence of missing data. Handbook of Statistics, 29, 215-246.
    • (2009) Handbook of Statistics , vol.29 , pp. 215-246
    • Haziza, D.1
  • 13
    • 79952165896 scopus 로고    scopus 로고
    • Parametric fractional imputation for missing data analysis
    • Kim, J.K. (2011). Parametric fractional imputation for missing data analysis. Biometrika, 98, 119-132.
    • (2011) Biometrika , vol.98 , pp. 119-132
    • Kim, J.K.1
  • 14
    • 24944511252 scopus 로고    scopus 로고
    • Fractional hot deck imputation
    • Kim, J.K. and Fuller, W.A. (2004). Fractional hot deck imputation. Biometrika, 91, 559-578.
    • (2004) Biometrika , vol.91 , pp. 559-578
    • Kim, J.K.1    Fuller, W.A.2
  • 15
    • 84873333640 scopus 로고    scopus 로고
    • Variance estimation for nearest neighbor imputation for U.S. census long form data
    • Kim, J.K., Fuller, W.A. and Bell, W.R. (2011). Variance estimation for nearest neighbor imputation for U.S. census long form data. Annals of Applied Statistics, 5, 824-842.
    • (2011) Annals of Applied Statistics , vol.5 , pp. 824-842
    • Kim, J.K.1    Fuller, W.A.2    Bell, W.R.3
  • 17
    • 84863102090 scopus 로고    scopus 로고
    • Parametric fractional imputation for nonignorable missing data
    • Kim, J.Y. and Kim, J.K. (2012). Parametric fractional imputation for nonignorable missing data. Journal of the Korean Statistical Society, 41, 291-303.
    • (2012) Journal of the Korean Statistical Society , vol.41 , pp. 291-303
    • Kim, J.Y.1    Kim, J.K.2
  • 18
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input (with discussion)
    • Meng, X.L. (1994). Multiple-imputation inferences with uncongenial sources of input (with discussion). Statistical Science, 9, 538-573.
    • (1994) Statistical Science , vol.9 , pp. 538-573
    • Meng, X.L.1
  • 19
    • 84855259178 scopus 로고    scopus 로고
    • Modeling of complex survey data: Why is it a problem? How should we approach it?
    • Pfeffermann, D. (2011). Modeling of complex survey data: why is it a problem? How should we approach it? Survey Methodology, 37, 115-136.
    • (2011) Survey Methodology , vol.37 , pp. 115-136
    • Pfeffermann, D.1
  • 20
    • 7544251644 scopus 로고    scopus 로고
    • Estimating equations for the analysis of survey data using poststratification information
    • Rao, J.N.K., Yung, W. and Hidiroglou, M.A. (2002). Estimating equations for the analysis of survey data using poststratification information. The Indian Journal of Statistics, Series A, 64, 364-378.
    • (2002) The Indian Journal of Statistics, Series A , vol.64 , pp. 364-378
    • Rao, J.1    Yung, W.2    Hidiroglou, M.A.3
  • 21
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D.B. (1976). Inference and missing data. Biometrika, 63, 581-590.
    • (1976) Biometrika , vol.63 , pp. 581-590
    • Rubin, D.B.1
  • 23
    • 0007071163 scopus 로고
    • Asymptotic results for multiple imputation
    • Schenker, N. and Welsh, A.H. (1988). Asymptotic results for multiple imputation. The Annals of Statistics, 16, 1550-1566.
    • (1988) The Annals of Statistics , vol.16 , pp. 1550-1566
    • Schenker, N.1    Welsh, A.H.2
  • 25
    • 49749093420 scopus 로고    scopus 로고
    • Monte Carlo likelihood inference for missing data models
    • Sung, Y.J. and Geyer, C.J. (2007). Monte Carlo likelihood inference for missing data models. The Annals of Statistics, 35, 990-1011.
    • (2007) The Annals of Statistics , vol.35 , pp. 990-1011
    • Sung, Y.J.1    Geyer, C.J.2
  • 26
    • 0034366440 scopus 로고    scopus 로고
    • Expected estimating equations to accommodate covariate measurement error
    • Wang, C.-Y. and Pepe, M.S. (2000). Expected estimating equations to accommodate covariate measurement error. Journal of the Royal Statistical Society, Series B, 62, 509-24.
    • (2000) Journal of the Royal Statistical Society, Series B , vol.62 , pp. 509-524
    • Wang, C.-Y.1    Pepe, M.S.2
  • 28
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G.C. and Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association, 85, 699-704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.1    Tanner, M.A.2
  • 29
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecifed models
    • White, H. (1982). Maximum likelihood estimation of misspecifed models. Econometrica, 50, 1-25.
    • (1982) Econometrica , vol.50 , pp. 1-25
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.