-
2
-
-
34250134276
-
A local limit theorem for attraction to the standard normal law: The case of infinite variance
-
S.K. Basu (1984), A local limit theorem for attraction to the standard normal law: The case of infinite variance. Metrika 31, 245-252. Available at http://www.springerlink.com/content/v616742404102u13/ MR0754965
-
(1984)
Metrika
, vol.31
, pp. 245-252
-
-
Basu, S.K.1
-
4
-
-
0018069936
-
On Distribution-Free Lower Confidence Limits for the Mean of a Nonnegative Random Variable
-
M. Breth, J. S. Maritz, and E. J. Williams (1978), On Distribution-Free Lower Confidence Limits for the Mean of a Nonnegative Random Variable. Biometrika 65, 529-534.
-
(1978)
Biometrika
, vol.65
, pp. 529-534
-
-
Breth, M.1
Maritz, J.S.2
Williams, E.J.3
-
5
-
-
0000576596
-
Discussion paper
-
K.S. Chan and C.J. Geyer (1994), Discussion paper. Ann. Stat. 22, 1747-1758.
-
(1994)
Ann. Stat
, vol.22
, pp. 1747-1758
-
-
Chan, K.S.1
Geyer, C.J.2
-
6
-
-
0012949307
-
Limit theorems for functionals of ergodic Markov chains with general state space
-
X. Chen (1999). Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Amer. Math. Soc. 139.
-
(1999)
Mem. Amer. Math. Soc
, pp. 139
-
-
Chen, X.1
-
8
-
-
84972511893
-
Practical Markov chain Monte Carlo
-
C.J. Geyer (1992), Practical Markov chain Monte Carlo. Stat. Sci., Vol. 7, No. 4, 473-483.
-
(1992)
Stat. Sci
, vol.7
, Issue.4
, pp. 473-483
-
-
Geyer, C.J.1
-
9
-
-
17444373965
-
On the central limit theorem for geometrically ergodic Markov chains
-
O. Haggstrõm (2005), On the central limit theorem for geometrically ergodic Markov chains. Probab. Th. Relat. Fields 132, 74-82.
-
(2005)
Probab. Th. Relat. Fields
, vol.132
, pp. 74-82
-
-
Haggstrõm, O.1
-
10
-
-
2142780945
-
On the Applicabil-ity of Regenerative Simulation in Markov Chain Monte Carlo
-
J.P. Hobert, G.L. Jones, B. Presnell, and J.S. Rosenthal (2002), On the Applicabil-ity of Regenerative Simulation in Markov Chain Monte Carlo. Biometrika 89, 731-743.
-
(2002)
Biometrika
, vol.89
, pp. 731-743
-
-
Hobert, J.P.1
Jones, G.L.2
Presnell, B.3
Rosenthal, J.S.4
-
12
-
-
33645087459
-
On the Markov chain central limit theorem
-
G.L. Jones (2004), On the Markov chain central limit theorem. Prob. Surveys 1, 299-320.
-
(2004)
Prob. Surveys
, vol.1
, pp. 299-320
-
-
Jones, G.L.1
-
13
-
-
34250130646
-
Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions
-
C. Kipnis and S.R.S. Varadhan (1986), Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104, 1-19.
-
(1986)
Comm. Math. Phys
, vol.104
, pp. 1-19
-
-
Kipnis, C.1
Varadhan, S.R.S.2
-
16
-
-
0002720637
-
Recent advances in the central limit theorem and its weak invariance principle for mixing sequences of random variables (A survey)
-
E. Eberlein and M.S. Taqqu, eds., Birkhauser, Cambridge, Mass
-
M. Peligrad (1986), Recent advances in the central limit theorem and its weak invariance principle for mixing sequences of random variables (a survey). In Dependence in Probability and Statistics: A Survey of Recent Results, E. Eberlein and M.S. Taqqu, eds., Birkhauser, Cambridge, Mass., pp. 193-223.
-
(1986)
Dependence in Probability and Statistics: A Survey of Recent Results
, pp. 193-223
-
-
Peligrad, M.1
-
17
-
-
0033233847
-
A note on acceptance rate criteria for CLTs for Metropolis-Hastings algorithms
-
G.O. Roberts (1999), A note on acceptance rate criteria for CLTs for Metropolis-Hastings algorithms. J. Appl. Prob. 36, 1210-1217.
-
(1999)
J. Appl. Prob
, vol.36
, pp. 1210-1217
-
-
Roberts, G.O.1
-
18
-
-
0002074149
-
Geometric ergodicity and hybrid Markov chains
-
Paper
-
G.O. Roberts and J.S. Rosenthal (1997), Geometric ergodicity and hybrid Markov chains. Electronic Comm. Prob. 2, Paper no. 2, 13-25.
-
(1997)
Electronic Comm. Prob
, vol.2
, Issue.2
, pp. 13-25
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
19
-
-
84890736685
-
General state space Markov chains and MCMC algorithms
-
G.O. Roberts and J.S. Rosenthal (2004), General state space Markov chains and MCMC algorithms. Prob. Surveys 1, 20-71.
-
(2004)
Prob. Surveys
, vol.1
, pp. 20-71
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
20
-
-
85037898351
-
-
Variance Bounding Markov Chains. Preprint
-
G.O. Roberts and J.S. Rosenthal (2006), Variance Bounding Markov Chains. Preprint.
-
(2006)
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
21
-
-
0001878188
-
A review of asymptotic convergence for general state space Markov chains. Far East
-
J.S. Rosenthal (2001), A review of asymptotic convergence for general state space Markov chains. Far East J. Theor. Stat. 5, 37-50.
-
(2001)
J. Theor. Stat
, vol.5
, pp. 37-50
-
-
Rosenthal, J.S.1
-
22
-
-
0004057553
-
-
2nd ed. McGraw-Hill, New York
-
W. Rudin (1991), Functional Analysis, 2nd ed. McGraw-Hill, New York.
-
(1991)
Functional Analysis
-
-
Rudin, W.1
-
23
-
-
0000576595
-
Markov chains for exploring posterior distributions (With discussion)
-
L. Tierney (1994), Markov chains for exploring posterior distributions (with discussion). Ann. Stat. 22, 1701-1762.
-
(1994)
Ann. Stat
, vol.22
, pp. 1701-1762
-
-
Tierney, L.1
|