메뉴 건너뛰기




Volumn 72, Issue , 2015, Pages 32-36

A new classifier for breast cancer detection based on Naïve Bayesian

Author keywords

Breast cancer detection; NB classifier; Performance evaluation tests; Weighted NB classifier

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; PATTERN RECOGNITION; SODIUM;

EID: 84929170892     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2015.04.028     Document Type: Article
Times cited : (136)

References (28)
  • 1
    • 84866075139 scopus 로고    scopus 로고
    • Support vector machine based diagnostic system for breast cancer using swarm intelligence
    • H.L. Chen, B. Yang, G. Wang, S.J. Wang, J. Liu, and D.Y. Liu Support vector machine based diagnostic system for breast cancer using swarm intelligence J. Med. Syst. 36 4 2012 2505 2519
    • (2012) J. Med. Syst. , vol.36 , Issue.4 , pp. 2505-2519
    • Chen, H.L.1    Yang, B.2    Wang, G.3    Wang, S.J.4    Liu, J.5    Liu, D.Y.6
  • 3
    • 0344466786 scopus 로고    scopus 로고
    • A fuzzy-genetic approach to breast cancer diagnosis
    • C.A. Pena Reyes, and M. Sipper A fuzzy-genetic approach to breast cancer diagnosis Artif. Intell. Med. 17 2 1999 131 155
    • (1999) Artif. Intell. Med. , vol.17 , Issue.2 , pp. 131-155
    • Pena Reyes, C.A.1    Sipper, M.2
  • 5
    • 0004233960 scopus 로고    scopus 로고
    • Lippincott-Raven Philadelphia
    • D. Kopans Breast Imaging 1998 Lippincott-Raven Philadelphia
    • (1998) Breast Imaging
    • Kopans, D.1
  • 6
    • 84861320259 scopus 로고    scopus 로고
    • Detection of cancerous masses in mammograms by template matching: Optimization of template brightness distribution by means of evolutionary algorithm
    • M. Bator, and M. Nieniewski Detection of cancerous masses in mammograms by template matching: optimization of template brightness distribution by means of evolutionary algorithm J. Digit. Imaging 25 1 2012 162 172
    • (2012) J. Digit. Imaging , vol.25 , Issue.1 , pp. 162-172
    • Bator, M.1    Nieniewski, M.2
  • 7
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • J. Abonyi, and F. Szeifert Supervised fuzzy clustering for the identification of fuzzy classifiers Pattern Recogn. Lett. 24 14 2003 2195 2207
    • (2003) Pattern Recogn. Lett. , vol.24 , Issue.14 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 8
    • 23944521875 scopus 로고    scopus 로고
    • A mixture of experts network structure for breast cancer diagnosis
    • E.D. Ubeyli A mixture of experts network structure for breast cancer diagnosis J. Med. Syst. 29 5 2005 569 579
    • (2005) J. Med. Syst. , vol.29 , Issue.5 , pp. 569-579
    • Ubeyli, E.D.1
  • 9
    • 33846014233 scopus 로고    scopus 로고
    • A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis
    • S. Sahan A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis Comput. Biol. Med. 37 3 2007 415 423
    • (2007) Comput. Biol. Med. , vol.37 , Issue.3 , pp. 415-423
    • Sahan, S.1
  • 10
    • 33947653184 scopus 로고    scopus 로고
    • Implementing automated diagnostic systems for breast cancer detection
    • E.D. Ubeyli Implementing automated diagnostic systems for breast cancer detection Expert Syst. Appl. 33 4 2007 1054 1062
    • (2007) Expert Syst. Appl. , vol.33 , Issue.4 , pp. 1054-1062
    • Ubeyli, E.D.1
  • 11
    • 34249317613 scopus 로고    scopus 로고
    • Breast cancer diagnosis using least square support vector machine
    • K. Polat, and S. Gunes Breast cancer diagnosis using least square support vector machine Digital Signal Process. 17 4 2007 694 701
    • (2007) Digital Signal Process. , vol.17 , Issue.4 , pp. 694-701
    • Polat, K.1    Gunes, S.2
  • 12
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • M.F. Akay Support vector machines combined with feature selection for breast cancer diagnosis Expert Syst. Appl. 36 2 2009 3240 3247
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3240-3247
    • Akay, M.F.1
  • 13
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4. 5
    • J. Quinlan Improved use of continuous attributes in C4. 5 J. Artif. Intell. Res. 4 1996 77 90
    • (1996) J. Artif. Intell. Res. , vol.4 , pp. 77-90
    • Quinlan, J.1
  • 16
    • 0031623647 scopus 로고    scopus 로고
    • A support vector machine approach to decision trees
    • K. Bennett, J. Blue, A support vector machine approach to decision trees, in: Neural Networks Proceedings, 1998, pp. 2396-2401.
    • (1998) Neural Networks Proceedings , pp. 2396-2401
    • Bennett, K.1    Blue, J.2
  • 17
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • R. Setiono Generating concise and accurate classification rules for breast cancer diagnosis Artif. Intell. Med. 18 3 2000 205 219
    • (2000) Artif. Intell. Med. , vol.18 , Issue.3 , pp. 205-219
    • Setiono, R.1
  • 18
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • D. Nauck, and R. Kruse Obtaining interpretable fuzzy classification rules from medical data Artif. Intell. Med. 16 2 1999 149 169
    • (1999) Artif. Intell. Med. , vol.16 , Issue.2 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 19
    • 56349123043 scopus 로고    scopus 로고
    • An expert system for detection of breast cancer based on association rules and neural network
    • M. Karabatak, and M.C. Ince An expert system for detection of breast cancer based on association rules and neural network Expert Syst. Appl. 36 2, Part 2 2009 3465 3469
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3465-3469
    • Karabatak, M.1    Ince, M.C.2
  • 21
    • 33947278339 scopus 로고    scopus 로고
    • Breast cancer prediction using the isotonic separation technique
    • R. Young, R. Chandrasekaran, and V.S. Jacob Breast cancer prediction using the isotonic separation technique Eur. J. Oper. Res. 181 2 2007 842 854
    • (2007) Eur. J. Oper. Res. , vol.181 , Issue.2 , pp. 842-854
    • Young, R.1    Chandrasekaran, R.2    Jacob, V.S.3
  • 22
    • 34548509520 scopus 로고    scopus 로고
    • Diagnosis of breast cancer using Bayesian networks: A case study
    • N.C.- Ramírez, and H. Gabriel Diagnosis of breast cancer using Bayesian networks: a case study J. Artif. Intell. Med. Arch. 37 11 2007 1553 1564
    • (2007) J. Artif. Intell. Med. Arch. , vol.37 , Issue.11 , pp. 1553-1564
    • Ramírez, N.C.1    Gabriel, H.2
  • 23
    • 40049100020 scopus 로고    scopus 로고
    • A Bayesian derived network of breast pathology co-occurrence
    • S. Maskery, and H. Hu A Bayesian derived network of breast pathology co-occurrence J. Biomed. Inform. Arch. 41 2 2008 242 250
    • (2008) J. Biomed. Inform. Arch. , vol.41 , Issue.2 , pp. 242-250
    • Maskery, S.1    Hu, H.2
  • 24
    • 60249099439 scopus 로고    scopus 로고
    • A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method
    • W. Chang Yeh, and W.W. Chang A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method Expert Syst. Appl. 36 4 2009 8204 8211
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 8204-8211
    • Chang Yeh, W.1    Chang, W.W.2
  • 28
    • 39549095316 scopus 로고    scopus 로고
    • An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases
    • A. Sengur An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases Comput. Biol. Med. 38 3 2008 329 338
    • (2008) Comput. Biol. Med. , vol.38 , Issue.3 , pp. 329-338
    • Sengur, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.