메뉴 건너뛰기




Volumn 31, Issue 7, 2015, Pages 1154-1159

Cooperative development of logical modelling standards and tools with CoLoMoTo

(30)  Naldi, Aurélien a   Monteiro, Pedro T b,c   Müssel, Christoph d   Kestler, Hans A d,e,f   Thieffry, Denis g   Xenarios, Ioannis a,h   Saez Rodriguez, Julio i   Helikar, Tomas j   Chaouiya, Claudine c   Albert, Reka k   Barberis, Matteo k   Calzone, Laurence k   Chasapi, Anastasia k   Cokelaer, Thomas k   Crespo, Isaac k   Dorier, Julien k   Dräger, Andreas k   Hernandez, Céline k   Hucka, Michael k   De Jong, Hidde k   more..

g CNRS   (France)

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; CELLS; COMPUTER PROGRAM; COMPUTER SIMULATION; HEALTH CARE ORGANIZATION; HUMAN; METABOLISM; PROCEDURES; STANDARDS; SYSTEMS BIOLOGY; THEORETICAL MODEL;

EID: 84929144070     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv013     Document Type: Article
Times cited : (73)

References (84)
  • 1
    • 0037686112 scopus 로고    scopus 로고
    • The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
    • Albert, R. and Othmer, H. (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol., 223, 1-18.
    • (2003) J. Theor. Biol. , vol.223 , pp. 1-18
    • Albert, R.1    Othmer, H.2
  • 2
    • 84875381335 scopus 로고    scopus 로고
    • On the number of different dynamics in Boolean networks with deterministic update schedules
    • Aracena, J. et al. (2013) On the number of different dynamics in Boolean networks with deterministic update schedules. Math. Biosci., 242, 188-94.
    • (2013) Math. Biosci. , vol.242 , pp. 188-194
    • Aracena, J.1
  • 3
    • 84860513120 scopus 로고    scopus 로고
    • Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli
    • Batt, G. et al. (2005) Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli. Bioinformatics, 21 (Suppl. 1), i19-i28.
    • (2005) Bioinformatics , vol.21 , pp. i19-i28
    • Batt, G.1
  • 4
    • 84880340067 scopus 로고    scopus 로고
    • Dynamical modeling and analysis of large cellular regulatory networks
    • Bérenguier, D. et al. (2013) Dynamical modeling and analysis of large cellular regulatory networks. Chaos, 23, 025114.
    • (2013) Chaos , vol.23 , pp. 025114
    • Bérenguier, D.1
  • 5
    • 3042693879 scopus 로고    scopus 로고
    • Application of formal methods to biological regulatory networks: Extending Thomas' asynchronous logical approach with temporal logic
    • Bernot, G. et al. (2004) Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic. J. Theor. Biol., 229, 339-348.
    • (2004) J. Theor. Biol. , vol.229 , pp. 339-348
    • Bernot, G.1
  • 6
    • 27144450537 scopus 로고    scopus 로고
    • Systems biology. Less is more in modeling large genetic networks
    • Bornholdt, S. (2005) Systems biology. Less is more in modeling large genetic networks. Science, 310, 449-451.
    • (2005) Science , vol.310 , pp. 449-451
    • Bornholdt, S.1
  • 7
    • 46249112705 scopus 로고    scopus 로고
    • Boolean network models of cellular regulation: Prospects and limitations
    • Bornholdt, S. (2008) Boolean network models of cellular regulation: prospects and limitations. J. R. Soc. Interface, 5 (Suppl. 1), S85-94.
    • (2008) J. R. Soc. Interface , vol.5 , pp. S85-94
    • Bornholdt, S.1
  • 8
    • 40749162829 scopus 로고    scopus 로고
    • LibSBML: An API library for SBML
    • Bornstein, B.J. A. (2008) LibSBML: an API library for SBML. Bioinformatics, 24, 880-881.
    • (2008) Bioinformatics , vol.24 , pp. 880-881
    • Bornstein, B.J.A.1
  • 9
    • 84886740491 scopus 로고    scopus 로고
    • Path2Models: Large-scale generation of computational models from biochemical pathway maps
    • Büchel, F. et al. (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol., 7, 116.
    • (2013) BMC Syst. Biol. , vol.7 , pp. 116
    • Büchel, F.1
  • 10
    • 77950825394 scopus 로고    scopus 로고
    • Mathematical modelling of cell-fate decision in response to death receptor engagement
    • Calzone, L. et al. (2010) Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput. Biol., 6, e1000702.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000702
    • Calzone, L.1
  • 11
    • 84882679573 scopus 로고    scopus 로고
    • (26 January 2015, date last accessed)
    • Chaouiya, C. et al. (2013a) Qualitative models, Version 1 Release 1. http://identifiers.org/combine.specifications/sbml.level-3.version-1.qual.version-1. release-1 (26 January 2015, date last accessed).
    • (2013) Qualitative Models, Version 1 Release 1
    • Chaouiya, C.1
  • 12
    • 84889794047 scopus 로고    scopus 로고
    • SBML qualitative models: A model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools
    • Chaouiya, C. et al. (2013b) SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst. Biol., 7, 135.
    • (2013) BMC Syst. Biol. , vol.7 , pp. 135
    • Chaouiya, C.1
  • 13
    • 84883221825 scopus 로고    scopus 로고
    • BioModels database: A repository of mathematical models of biological processes
    • Chelliah, V. et al. (2013) BioModels database: a repository of mathematical models of biological processes. Methods. Mol. Biol., 1021, 189-199.
    • (2013) Methods. Mol. Biol. , vol.1021 , pp. 189-199
    • Chelliah, V.1
  • 14
    • 0003962322 scopus 로고    scopus 로고
    • MIT Press, Cambridge, MA
    • Clarke, E. et al. (2000) Model Checking. MIT Press, Cambridge, MA.
    • (2000) Model Checking.
    • Clarke, E.1
  • 15
    • 84879171925 scopus 로고    scopus 로고
    • On circuit functionality in Boolean networks
    • Comet, J.-P. et al. (2013) On circuit functionality in Boolean networks. Bull. Math. Biol., 75, 906-919.
    • (2013) Bull. Math. Biol. , vol.75 , pp. 906-919
    • Comet, J.-P.1
  • 16
    • 80155212661 scopus 로고    scopus 로고
    • Controlled vocabularies and semantics in systems biology
    • Courtot, M. et al. (2011) Controlled vocabularies and semantics in systems biology. Mol. Syst. Biol., 7, 543.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 543
    • Courtot, M.1
  • 17
    • 45849093636 scopus 로고    scopus 로고
    • Boolean network model predicts cell cycle sequence of fission yeast
    • Davidich, M.I. and Bornholdt, S. (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS One, 3, e1672.
    • (2008) PLoS One , vol.3 , pp. e1672
    • Davidich, M.I.1    Bornholdt, S.2
  • 18
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • de Jong, H. (2002) Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 9, 67-103.
    • (2002) J. Comput. Biol. , vol.9 , pp. 67-103
    • De Jong, H.1
  • 19
    • 0345269975 scopus 로고    scopus 로고
    • Genetic network analyzer: Qualitative simulation of genetic regulatory networks
    • de Jong, H. et al. (2003) Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics, 19, 336-344.
    • (2003) Bioinformatics , vol.19 , pp. 336-344
    • De Jong, H.1
  • 20
    • 0345393853 scopus 로고    scopus 로고
    • Identification of all steady states in large networks by logical analysis
    • Devloo, V. et al. (2003) Identification of all steady states in large networks by logical analysis. Bull. Math. Biol., 65, 1025-1051.
    • (2003) Bull. Math. Biol. , vol.65 , pp. 1025-1051
    • Devloo, V.1
  • 21
    • 38949210153 scopus 로고    scopus 로고
    • Dynamic simulation of regulatory networks using SQUAD
    • Di Cara, A. et al. (2007) Dynamic simulation of regulatory networks using SQUAD. BMC Bioinformatics, 8, 462.
    • (2007) BMC Bioinformatics , vol.8 , pp. 462
    • Di Cara, A.1
  • 22
    • 79960423002 scopus 로고    scopus 로고
    • JSBML: A flexible Java library for working with SBML
    • Dräger, A. et al. (2011) JSBML: a flexible Java library for working with SBML. Bioinformatics, 27, 2167-2168.
    • (2011) Bioinformatics , vol.27 , pp. 2167-2168
    • Dräger, A.1
  • 23
    • 79960906495 scopus 로고    scopus 로고
    • A SAT-based algorithm for finding attractors in synchronous Boolean networks
    • Dubrova, E. and Teslenko, M. (2011) A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform., 8, 1393-1399.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.8 , pp. 1393-1399
    • Dubrova, E.1    Teslenko, M.2
  • 24
    • 33747874092 scopus 로고    scopus 로고
    • Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle
    • Fauré, A. et al. (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics, 22, e124-e131.
    • (2006) Bioinformatics , vol.22 , pp. e124-e131
    • Fauré, A.1
  • 25
    • 72949096331 scopus 로고    scopus 로고
    • Logical modelling of cell cycle control in eukaryotes: A comparative study
    • Fauré, A. and Thieffry, D. (2009) Logical modelling of cell cycle control in eukaryotes: a comparative study. Mol. BioSyst., 5, 1569-1581.
    • (2009) Mol. BioSyst. , vol.5 , pp. 1569-1581
    • Fauré, A.1    Thieffry, D.2
  • 26
    • 40149109180 scopus 로고    scopus 로고
    • Host-pathogen systems biology: Logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-met signal transduction
    • Franke, R. et al. (2008) Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-met signal transduction. BMC Syst. Biol., 2, 4.
    • (2008) BMC Syst. Biol. , vol.2 , pp. 4
    • Franke, R.1
  • 27
    • 50549088838 scopus 로고    scopus 로고
    • Synchronous versus asynchronous modeling of gene regulatory networks
    • Garg, A. et al. (2008) Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics, 24, 1917-1925.
    • (2008) Bioinformatics , vol.24 , pp. 1917-1925
    • Garg, A.1
  • 28
    • 38049136584 scopus 로고    scopus 로고
    • A unifying framework for modelling and analysing biochemical pathways using Petri nets
    • Calder, M. and Gilmore, S. (eds.), of Lecture Notes in Bioinformatics. Berlin
    • Gilbert, D. et al. (2007) A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Calder, M. and Gilmore, S. (eds.) CMSB, Vol. 4695 of Lecture Notes in Bioinformatics. Berlin, pp. 200-216.
    • (2007) CMSB , vol.4695 , pp. 200-216
    • Gilbert, D.1
  • 29
    • 0015609281 scopus 로고
    • The logical analysis of continuous non-linear biochemical control networks
    • Glass, L. and Kauffman, S. (1973) The logical analysis of continuous non-linear biochemical control networks. J Theor. Biol., 39, 103-129.
    • (1973) J Theor. Biol. , vol.39 , pp. 103-129
    • Glass, L.1    Kauffman, S.2
  • 30
    • 84887303651 scopus 로고    scopus 로고
    • Integrative modelling of the influence of MAPK network on cancer cell fate decision
    • Grieco, L. et al. (2013) Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol., 9, e1003286.
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003286
    • Grieco, L.1
  • 31
    • 0005126318 scopus 로고    scopus 로고
    • Time out of joint: Attractors in asynchronous random Boolean networks
    • Husbands, P. and Harvey, I. (eds.). MIT Press, Cambridge
    • Harvey, I. and Bossomaier, T. (1997) Time out of joint: attractors in asynchronous random Boolean networks. In: Husbands, P. and Harvey, I. (eds.) 4th European Conf. on Artificial Life (ECAL).MIT Press, Cambridge, pp. 67-75.
    • (1997) 4th European Conf. on Artificial Life (ECAL) , pp. 67-75
    • Harvey, I.1    Bossomaier, T.2
  • 32
    • 84864751083 scopus 로고    scopus 로고
    • The cell collective: Toward an open and collaborative approach to systems biology
    • Helikar, T. et al. (2012) The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol., 6, 96.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 96
    • Helikar, T.1
  • 33
    • 84876337178 scopus 로고    scopus 로고
    • A comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells
    • Helikar, T. et al. (2013) A comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. PLoS One, 8, e61757.
    • (2013) PLoS One , vol.8 , pp. e61757
    • Helikar, T.1
  • 34
    • 67650351960 scopus 로고    scopus 로고
    • ChemChains: A platform for simulation and analysis of biochemical networks aimed to laboratory scientists
    • Helikar, T. and Rogers, J.A. (2009) ChemChains: a platform for simulation and analysis of biochemical networks aimed to laboratory scientists. BMC Syst. Biol., 3, 58.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 58
    • Helikar, T.1    Rogers, J.A.2
  • 35
    • 84867026877 scopus 로고    scopus 로고
    • A Boolean model of the cardiac gene regulatory network determining first and second heart field identity
    • Herrmann, F. et al. (2012) A Boolean model of the cardiac gene regulatory network determining first and second heart field identity. PLoS One, 7, e46798.
    • (2012) PLoS One , vol.7 , pp. e46798
    • Herrmann, F.1
  • 36
    • 84856489283 scopus 로고    scopus 로고
    • Multiscale binarization of gene expression data for reconstructing Boolean networks
    • Hopfensitz, M. et al. (2012) Multiscale binarization of gene expression data for reconstructing Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform., 9, 487-498.
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.9 , pp. 487-498
    • Hopfensitz, M.1
  • 37
    • 84874210465 scopus 로고    scopus 로고
    • Attractors in Boolean networks-A tutorial
    • Hopfensitz, M. et al. (2013) Attractors in Boolean networks-a tutorial. Comput. Stat., 28, 19-36.
    • (2013) Comput. Stat. , vol.28 , pp. 19-36
    • Hopfensitz, M.1
  • 38
    • 0032809387 scopus 로고    scopus 로고
    • Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery
    • Huang, S. (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J. Mol. Med., 77, 469-480.
    • (1999) J. Mol. Med. , vol.77 , pp. 469-480
    • Huang, S.1
  • 39
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
    • Hucka, M. et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 19, 524-531.
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1
  • 40
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • Karlebach, G. and Shamir, R. (2008) Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol., 9, 770-780.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 41
    • 0345598902 scopus 로고    scopus 로고
    • Random Boolean network models and the yeast transcriptional network
    • Kauffman, S. et al. (2003) Random Boolean network models and the yeast transcriptional network. Proc. Natl Acad. Sci. USA., 100, 14796-14799.
    • (2003) Proc. Natl Acad. Sci. USA. , vol.100 , pp. 14796-14799
    • Kauffman, S.1
  • 42
    • 0014489272 scopus 로고
    • Metabolic stability and epigensis in randomly constructed genetic nets
    • Kauffman, S.A. (1969) Metabolic stability and epigensis in randomly constructed genetic nets. J. Theor. Biol., 22, 437-467.
    • (1969) J. Theor. Biol. , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 44
    • 34447551397 scopus 로고    scopus 로고
    • Structural and functional analysis of cellular networks with cellnetanalyzer
    • Klamt, S. et al. (2007) Structural and functional analysis of cellular networks with cellnetanalyzer. BMC Syst. Biol., 1, 2.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 2
    • Klamt, S.1
  • 45
    • 84911940101 scopus 로고    scopus 로고
    • Computing symbolic steady states of Boolean networks
    • of Lecture Notes in Computer Science
    • Klarner, H. et al. (2014) Computing symbolic steady states of Boolean networks. In: Cellular Automata, Vol. 8751 of Lecture Notes in Computer Science, pp. 561-570.
    • (2014) Cellular Automata , vol.8751 , pp. 561-570
    • Klarner, H.1
  • 46
    • 1842687878 scopus 로고    scopus 로고
    • The yeast cell-cycle network is robustly designed
    • Li, F. et al. (2004) The yeast cell-cycle network is robustly designed. Proc. Natl Acad. Sci. USA, 101, 4781-4786.
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 4781-4786
    • Li, F.1
  • 47
    • 84879151909 scopus 로고    scopus 로고
    • Dynamics of influenza virus and human host interactions during infection and replication cycle
    • Madrahimov, A. et al. (2012) Dynamics of influenza virus and human host interactions during infection and replication cycle. Bull. Math. Biol., 75, 988-1011.
    • (2012) Bull. Math. Biol. , vol.75 , pp. 988-1011
    • Madrahimov, A.1
  • 48
    • 84861205185 scopus 로고    scopus 로고
    • Efficient verification for logical models of regulatory networks
    • Advances in Intelligent and Soft Computing
    • Monteiro, P.T. and Chaouiya, C. (2012) Efficient verification for logical models of regulatory networks. In: PACBB'12, Vol. 154 of Advances in Intelligent and Soft Computing, pp. 259-267.
    • (2012) PACBB'12 , vol.154 , pp. 259-267
    • Monteiro, P.T.1    Chaouiya, C.2
  • 49
    • 77952851181 scopus 로고    scopus 로고
    • BoolNet-an R package for generation, reconstruction and analysis of Boolean networks
    • Müssel, C. et al. (2010) BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics, 26, 1378-1380.
    • (2010) Bioinformatics , vol.26 , pp. 1378-1380
    • Müssel, C.1
  • 51
    • 38049150712 scopus 로고    scopus 로고
    • Decision diagrams for the representation and analysis of logical models of genetic networks
    • Lecture Notes in Computer Science
    • Naldi, A. et al. (2007) Decision diagrams for the representation and analysis of logical models of genetic networks. In: CMSB, Vol. 4695 of Lecture Notes in Computer Science, pp. 233-247.
    • (2007) CMSB , vol.4695 , pp. 233-247
    • Naldi, A.1
  • 52
    • 67649771445 scopus 로고    scopus 로고
    • Logical modelling of regulatory networks with GINsim 2.3
    • Naldi, A. et al. (2009) Logical modelling of regulatory networks with GINsim 2.3. Biosystems, 97, 134-139.
    • (2009) Biosystems , vol.97 , pp. 134-139
    • Naldi, A.1
  • 53
    • 78049424847 scopus 로고    scopus 로고
    • Diversity and plasticity of the cell types predicted from regulatory network modelling
    • Naldi, A. et al. (2010) Diversity and plasticity of the cell types predicted from regulatory network modelling. PLoS Comput. Biol., 6, e1000912.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000912
    • Naldi, A.1
  • 54
    • 79953226975 scopus 로고    scopus 로고
    • Dynamically consistent reduction of logical regulatory graphs
    • Naldi, A. et al. (2011) Dynamically consistent reduction of logical regulatory graphs. Theor. Comput. Sci., 412, 2207-2218.
    • (2011) Theor. Comput. Sci. , vol.412 , pp. 2207-2218
    • Naldi, A.1
  • 55
    • 45149097650 scopus 로고    scopus 로고
    • Global control of cell-cycle transcription by coupled CDK and network oscillators
    • Orlando, D.A. et al. (2008) Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature, 453, 944-947.
    • (2008) Nature , vol.453 , pp. 944-947
    • Orlando, D.A.1
  • 56
    • 77952955237 scopus 로고    scopus 로고
    • From structure to dynamics: Frequency tuning in the p53-Mdm2 network. II Differential and stochastic approaches
    • Ouattara, D.A. and Aothers (2010) From structure to dynamics: frequency tuning in the p53-Mdm2 network. II Differential and stochastic approaches. J. Theor. Biol., 264, 1177-1189.
    • (2010) J. Theor. Biol. , vol.264 , pp. 1177-1189
    • Ouattara, D.A.1    Aothers2
  • 57
    • 84867349994 scopus 로고    scopus 로고
    • Predictive computation of genomic logic processing functions in embryonic development
    • Peter, I.S. et al. (2012) Predictive computation of genomic logic processing functions in embryonic development. Proc. Natl Acad. Sci. USA, 109, 16434-16442.
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 16434-16442
    • Peter, I.S.1
  • 58
    • 49549085003 scopus 로고    scopus 로고
    • Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework
    • Remy, E. et al. (2008) Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math., 41, 335-350.
    • (2008) Adv. Appl. Math. , vol.41 , pp. 335-350
    • Remy, E.1
  • 60
    • 84881556356 scopus 로고    scopus 로고
    • Boolean modeling of biological regulatory networks: A methodology tutorial
    • Saadatpour, A. and Albert, R. (2013) Boolean modeling of biological regulatory networks: a methodology tutorial. Methods, 62, 3-12.
    • (2013) Methods , vol.62 , pp. 3-12
    • Saadatpour, A.1    Albert, R.2
  • 61
    • 34548431024 scopus 로고    scopus 로고
    • A logical model provides insights into T cell receptor signaling
    • Saez-Rodriguez, J. et al. (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol., 3, e163.
    • (2007) PLoS Comput. Biol. , vol.3 , pp. e163
    • Saez-Rodriguez, J.1
  • 62
    • 84879452903 scopus 로고    scopus 로고
    • Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks
    • Samaga, R. and Klamt, S. (2013) Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks. Cell Commun. Signal., 11, 43.
    • (2013) Cell Commun. Signal. , vol.11 , pp. 43
    • Samaga, R.1    Klamt, S.2
  • 63
    • 61449309306 scopus 로고    scopus 로고
    • Segmenting the fly embryo: Logical analysis of the role of the segment polarity cross-regulatory module
    • Sánchez, L. et al. (2008) Segmenting the fly embryo: logical analysis of the role of the segment polarity cross-regulatory module. Int. J. Dev. Biol., 52, 1059-1075.
    • (2008) Int. J. Dev. Biol. , vol.52 , pp. 1059-1075
    • Sánchez, L.1
  • 64
    • 0035928464 scopus 로고    scopus 로고
    • A logical analysis of the drosophila gapgene system
    • Sánchez, L. and Thieffry, D. (2001) A logical analysis of the drosophila gapgene system. J. Theor. Biol., 211, 115-141.
    • (2001) J. Theor. Biol. , vol.211 , pp. 115-141
    • Sánchez, L.1    Thieffry, D.2
  • 65
    • 0041381349 scopus 로고    scopus 로고
    • Segmenting the fly embryo: A logical analysis of the pair-rule cross-regulatory module
    • Sánchez, L. and Thieffry, D. (2003) Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J. Theor. Biol., 224, 517-537.
    • (2003) J. Theor. Biol. , vol.224 , pp. 517-537
    • Sánchez, L.1    Thieffry, D.2
  • 66
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich, I. et al. (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18, 261-274.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1
  • 67
    • 0035999984 scopus 로고    scopus 로고
    • Binary analysis and optimization-based normalization of gene expression data
    • Shmulevich, I. and Zhang, W. (2002) Binary analysis and optimization-based normalization of gene expression data. Bioinformatics, 18, 555-565.
    • (2002) Bioinformatics , vol.18 , pp. 555-565
    • Shmulevich, I.1    Zhang, W.2
  • 68
    • 79953107902 scopus 로고    scopus 로고
    • Analysis of discrete bioregulatory networks using symbolic steady states
    • Siebert, H. (2011) Analysis of discrete bioregulatory networks using symbolic steady states. Bull. Math. Biol., 73, 873-898.
    • (2011) Bull. Math. Biol. , vol.73 , pp. 873-898
    • Siebert, H.1
  • 69
    • 33845198572 scopus 로고    scopus 로고
    • Incorporating time delays into the logical analysis of gene regulatory networks
    • Lecture Notes in Computer Science
    • Siebert, H. and Bockmayr, A. (2006) Incorporating time delays into the logical analysis of gene regulatory networks. In: CMSB, Vol. 4210 of Lecture Notes in Computer Science, pp. 169-183.
    • (2006) CMSB , vol.4210 , pp. 169-183
    • Siebert, H.1    Bockmayr, A.2
  • 70
    • 84865412261 scopus 로고    scopus 로고
    • Continuous time Boolean modeling for biological signaling: Application of Gillespie algorithm
    • Stoll, G. et al. (2012). Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst. Biol., 6, 116.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 116
    • Stoll, G.1
  • 71
    • 84867537553 scopus 로고    scopus 로고
    • CellNOptR: A flexible toolkit to train protein signaling networks to data using multiple logic formalisms
    • Terfve, C.D.A. et al. (2012) CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst. Biol., 6, 133.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 133
    • Terfve, C.D.A.1
  • 72
    • 34347333614 scopus 로고    scopus 로고
    • Modeling systems-level regulation of host immune responses
    • Thakar, J. et al. (2007) Modeling systems-level regulation of host immune responses. PLoS Comput. Biol., 3, e109.
    • (2007) PLoS Comput. Biol. , vol.3 , pp. e109
    • Thakar, J.1
  • 73
    • 34548327206 scopus 로고    scopus 로고
    • Dynamical roles of biological regulatory circuits
    • Thieffry, D. (2007) Dynamical roles of biological regulatory circuits. Brief. Bioinform., 8, 220-225.
    • (2007) Brief. Bioinform. , vol.8 , pp. 220-225
    • Thieffry, D.1
  • 74
    • 0015823097 scopus 로고
    • Boolean formalization of genetic control circuits
    • Thomas, R. (1973) Boolean formalization of genetic control circuits. J. Theor. Biol., 42, 563-585.
    • (1973) J. Theor. Biol. , vol.42 , pp. 563-585
    • Thomas, R.1
  • 75
    • 0000915688 scopus 로고
    • On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations
    • Della Dora, J. et al. (eds.). Springer, Berlin Heidelberg
    • Thomas, R. (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Della Dora, J. et al. (eds.) Numerical Methods in the Study of Critical Phenomena. Springer, Berlin Heidelberg, pp. 180-193.
    • (1981) Numerical Methods in the Study of Critical Phenomena , pp. 180-193
    • Thomas, R.1
  • 76
    • 0025948178 scopus 로고
    • Regulatory networks seen as asynchronous automata: A logical description
    • Thomas, R. (1991) Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol., 153, 1-23.
    • (1991) J. Theor. Biol. , vol.153 , pp. 1-23
    • Thomas, R.1
  • 77
    • 84879166782 scopus 로고    scopus 로고
    • Remarks on the respective roles of logical parameters and time delays in asynchronous logic: An homage to El Houssine Snoussi
    • Thomas, R. (2013) Remarks on the respective roles of logical parameters and time delays in asynchronous logic: an homage to El Houssine Snoussi. Bull. Math. Biol., 75, 896-904.
    • (2013) Bull. Math. Biol. , vol.75 , pp. 896-904
    • Thomas, R.1
  • 78
    • 0003691048 scopus 로고
    • CRC Press, Boca Raton, Florida, USA
    • Thomas, R. and d'Ari, R. (1990) Biological Feedback. CRC Press, Boca Raton, Florida, USA, pp. 316.
    • (1990) Biological Feedback. , pp. 316
    • Thomas, R.1    D'Ari, R.2
  • 79
    • 84867005245 scopus 로고    scopus 로고
    • Ergodic sets as cell phenotype of budding yeast cell cycle
    • Todd, R.G. and Helikar, T. (2012) Ergodic sets as cell phenotype of budding yeast cell cycle. PLoS One, 7, e45780.
    • (2012) PLoS One , vol.7 , pp. e45780
    • Todd, R.G.1    Helikar, T.2
  • 80
    • 77954191450 scopus 로고    scopus 로고
    • Polynomial algebra of discrete models in systems biology
    • Veliz-Cuba, A. et al. (2010) Polynomial algebra of discrete models in systems biology. Bioinformatics, 26, 1637-1643.
    • (2010) Bioinformatics , vol.26 , pp. 1637-1643
    • Veliz-Cuba, A.1
  • 81
    • 83455162737 scopus 로고    scopus 로고
    • Reproducible computational biology experiments with SED-ML - The simulation experiment description markup language
    • Waltemath, D. et al. (2011) Reproducible computational biology experiments with SED-ML - the simulation experiment description markup language. BMC Syst. Biol., 5, 198.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 198
    • Waltemath, D.1
  • 82
    • 70449481350 scopus 로고    scopus 로고
    • Transforming Boolean models to continuous models: Methodology and application to T-cell receptor signaling
    • Wittmann, D. et al. (2009) Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol., 3, 98.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 98
    • Wittmann, D.1
  • 83
    • 84880350921 scopus 로고    scopus 로고
    • An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks
    • Zañudo, J.G.T. and Albert, R. (2013) An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos, 23, 025111.
    • (2013) Chaos , vol.23 , pp. 025111
    • Zañudo, J.G.T.1    Albert, R.2
  • 84
    • 55849100058 scopus 로고    scopus 로고
    • Network model of survival signaling in large granular lymphocyte leukemia
    • Zhang, R. et al. (2008) Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl Acad. Sci. USA, 105, 16308-16313.
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 16308-16313
    • Zhang, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.