-
1
-
-
84929110388
-
-
- (2008) [Online]. Available: http://en.wikipedia.org/wiki/Diabetes-mellitus-type-1#cite-note-2
-
(2008)
-
-
-
2
-
-
0032773676
-
Quality of life and diabetes
-
R. R. Rubin and M. Peyrot, "Quality of life and diabetes," Diabetes/Metab. Res. Rev., vol. 15, no. 3, pp. 205-218, 1999
-
(1999)
Diabetes/Metab. Res. Rev
, vol.15
, Issue.3
, pp. 205-218
-
-
Rubin, R.R.1
Peyrot, M.2
-
3
-
-
77950902799
-
Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus
-
M. L. Misso et al., "Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus," Cochrane Database. Syst. Rev., vol. 1, pp. 1-94, 2010
-
(2010)
Cochrane Database. Syst. Rev
, vol.1
, pp. 1-94
-
-
Misso, M.L.1
-
4
-
-
0032923398
-
Effects of meal carbohydrate content on insulin requirements in type 1 diabetic patients treated intensively with the basalbolus (ultralente-regular) insulin regimen
-
R. Rabasa-Lhoret et al., "Effects of meal carbohydrate content on insulin requirements in type 1 diabetic patients treated intensively with the basalbolus (ultralente-regular) insulin regimen," Diabetes Care, vol. 22, no. 5, pp. 667-673, 1999
-
(1999)
Diabetes Care
, vol.22
, Issue.5
, pp. 667-673
-
-
Rabasa-Lhoret, R.1
-
5
-
-
84929110389
-
-
- (2013) [Online].Available: http://www.uptodate.com/contents/preventingcomplications-in-diabetes-mellitus-beyond-The-basics
-
(2013)
-
-
-
6
-
-
0035514022
-
Limitations of conventional methods of self-monitoring of blood glucose: Lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes
-
E. Boland et al., "Limitations of conventional methods of self-monitoring of blood glucose: Lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes," Diabetes Care, vol. 24, no. 11, pp. 1858-1862, 2001
-
(2001)
Diabetes Care
, vol.24
, Issue.11
, pp. 1858-1862
-
-
Boland, E.1
-
7
-
-
41749083036
-
Use of continuous glucose monitoring to improve diabetes mellitus management
-
S. L. Ellis et al., "Use of continuous glucose monitoring to improve diabetes mellitus management," Endocrin. Metab. Clin., vol. 36, pp. 46-68, 2007
-
(2007)
Endocrin. Metab. Clin
, vol.36
, pp. 46-68
-
-
Ellis, S.L.1
-
8
-
-
54849147700
-
Continuous glucose monitoring and intensive treatment of type 1 diabete
-
W. V. Tamborlane et al., "Continuous glucose monitoring and intensive treatment of type 1 diabete," N. Engl. J. Med., vol. 359, no. 14, pp. 1464-1476, 2008
-
(2008)
N. Engl. J. Med
, vol.359
, Issue.14
, pp. 1464-1476
-
-
Tamborlane, W.V.1
-
9
-
-
0033011704
-
Is blood glucose predictable from previous values? A solicitation for data
-
T. Bremer and D. A. Gough, "Is blood glucose predictable from previous values? A solicitation for data," Diabetes, vol. 48, no. 3, pp. 445-451, 1999
-
(1999)
Diabetes
, vol.48
, Issue.3
, pp. 445-451
-
-
Bremer, T.1
Gough, D.A.2
-
10
-
-
66649123304
-
Effect of input excitation on the quality of empirical dynamic models for type 1 diabetes
-
D. A. Finan et al., "Effect of input excitation on the quality of empirical dynamic models for type 1 diabetes," AIChE J., vol. 55, no. 5, pp. 1135-1146, 2009
-
(2009)
AIChE J
, vol.55
, Issue.5
, pp. 1135-1146
-
-
Finan, D.A.1
-
11
-
-
84879700650
-
Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus
-
C. H. Zhao et al., "Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus," J. Diabetes Sci. Technol., vol. 6, no. 3, pp. 617-633, 2012
-
(2012)
J. Diabetes Sci. Technol
, vol.6
, Issue.3
, pp. 617-633
-
-
Zhao, C.H.1
-
12
-
-
34247372642
-
Glucose concentration can be predicted ahead in time from continuous glucosemonitoring sensor time-series
-
May
-
G. Sparacino et al., "Glucose concentration can be predicted ahead in time from continuous glucosemonitoring sensor time-series," IEEE Trans. Biomed. Eng., vol. 54, no. 5, pp. 931-937, May 2007
-
(2007)
IEEE Trans. Biomed. Eng
, vol.54
, Issue.5
, pp. 931-937
-
-
Sparacino, G.1
-
13
-
-
54749122334
-
Glucose prediction algorithms from continuous monitoring data: Assessment of accuracy via continuous glucose errorgrid analysis
-
F. Zanderigo et al., "Glucose prediction algorithms from continuous monitoring data: Assessment of accuracy via continuous glucose errorgrid analysis," J. Diabetes Sci. Technol., vol. 1, no. 5, pp. 645-651, 2007
-
(2007)
J. Diabetes Sci. Technol
, vol.1
, Issue.5
, pp. 645-651
-
-
Zanderigo, F.1
-
14
-
-
84879700650
-
Predicting subcutaneous glucose concentration using latent variable (LV)-based statistical analysis method for type 1 diabetes mellitus
-
C. H. Zhao et al., "Predicting subcutaneous glucose concentration using latent variable (LV)-based statistical analysis method for type 1 diabetes mellitus," J. Diabetes Sci. Technol., vol. 6, no. 3, pp. 617-633, 2012
-
(2012)
J. Diabetes Sci. Technol
, vol.6
, Issue.3
, pp. 617-633
-
-
Zhao, C.H.1
-
15
-
-
52449101078
-
Predictive monitoring for improved management of glucose levels
-
J. Reifman et al., "Predictive monitoring for improved management of glucose levels," J. Diabetes Sci. Technol., vol. 1, no. 4, pp. 478-486, 2007
-
(2007)
J. Diabetes Sci. Technol
, vol.1
, Issue.4
, pp. 478-486
-
-
Reifman, J.1
-
16
-
-
84892440430
-
Online prediction of subcutaneous glucose concentration for type 1 diabetes using empirical models and frequency-band separation
-
C. H. Zhao et al., "Online prediction of subcutaneous glucose concentration for type 1 diabetes using empirical models and frequency-band separation," AIChE J., vol. 60, no. 2, pp. 574-584, 2014
-
(2014)
AIChE J
, vol.60
, Issue.2
, pp. 574-584
-
-
Zhao, C.H.1
-
17
-
-
64349107874
-
Estimation of future glucose concentrations with subject-specific recursive linear models
-
M. Eren-Qruklu et al., "Estimation of future glucose concentrations with subject-specific recursive linear models," Diabetes Technol. Ther., vol. 11, no. 4, pp. 243-253, 2009
-
(2009)
Diabetes Technol. Ther
, vol.11
, Issue.4
, pp. 243-253
-
-
Eren-Qruklu, M.1
-
18
-
-
63849301691
-
Predicting subcutaneous glucose concentration in humans: Data-driven glucose modeling
-
Feb
-
A. Gani et al., "Predicting subcutaneous glucose concentration in humans: Data-driven glucose modeling," IEEE Trans. Biomed. Eng., vol. 56, no. 2, pp. 246-254, Feb. 2009
-
(2009)
IEEE Trans. Biomed. Eng
, vol.56
, Issue.2
, pp. 246-254
-
-
Gani, A.1
-
19
-
-
35348855218
-
Practical issues in the identification of empirical models from simulated type 1 diabetes data
-
D. A. Finan et al., "Practical issues in the identification of empirical models from simulated type 1 diabetes data," Diabetes Technol. Ther., vol. 9, no. 5, pp. 438-450, 2007
-
(2007)
Diabetes Technol. Ther
, vol.9
, Issue.5
, pp. 438-450
-
-
Finan, D.A.1
-
20
-
-
14844365611
-
Hypoglycemia prediction and detection using optimal estimation
-
C. C. Palerm et al., "Hypoglycemia prediction and detection using optimal estimation," Diabetes Technol. Ther., vol. 7, no. 1, pp. 3-14, 2005
-
(2005)
Diabetes Technol. Ther
, vol.7
, Issue.1
, pp. 3-14
-
-
Palerm, C.C.1
-
21
-
-
84885857641
-
Interindividual glucose dynamics in different frequency bands for online prediction of subcutaneous glucose concentration in type 1 diabetic subjects
-
C. H. Zhao et al., "Interindividual glucose dynamics in different frequency bands for online prediction of subcutaneous glucose concentration in type 1 diabetic subjects," AIChE J., vol. 59, no. 11, pp. 4228-4240, 2013
-
(2013)
AIChE J
, vol.59
, Issue.11
, pp. 4228-4240
-
-
Zhao, C.H.1
-
22
-
-
75749130634
-
Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring
-
C. Perez-Ganda et al., "Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring," Diabetes Tech. Ther., vol. 12, no. 1, pp. 81-88, 2010
-
(2010)
Diabetes Tech. Ther
, vol.12
, Issue.1
, pp. 81-88
-
-
Perez-Ganda, C.1
-
23
-
-
79551610188
-
Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes
-
S. M. Pappada et al., "Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes," Diabetes Tech. Ther., vol. 13, no. 2, pp. 135-141, 2011
-
(2010)
Diabetes Tech. Ther
, vol.13
, Issue.2
, pp. 135-141
-
-
Pappada, S.M.1
-
24
-
-
76849115431
-
Universal glucose models for predicting subcutaneous glucose concentration in Humans
-
Jan
-
A. Gani et al., "Universal glucose models for predicting subcutaneous glucose concentration in Humans," IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 1, pp. 157-165, Jan 2010
-
(2010)
IEEE Trans. Inf. Technol. Biomed
, vol.14
, Issue.1
, pp. 157-165
-
-
Gani, A.1
-
26
-
-
69049094326
-
Process similarity and developing new process models through migration
-
J. D. Lu et al., "Process similarity and developing new process models through migration," AIChE J., vol. 55, no. 9, pp. 2318-2328, 2009
-
(2009)
AIChE J
, vol.55
, Issue.9
, pp. 2318-2328
-
-
Lu, J.D.1
-
28
-
-
78049498460
-
Zone model predictive control: A strategy to minimize hyper-And hypoglycaemic events
-
B. Grosman et al., "Zone model predictive control: A strategy to minimize hyper-And hypoglycaemic events," J. Diabetes Sci. Technol., vol. 4, no. 4, pp. 961-975, 2010
-
(2010)
J. Diabetes Sci. Technol
, vol.4
, Issue.4
, pp. 961-975
-
-
Grosman, B.1
-
29
-
-
3342981187
-
Evaluating the accuracy of continuous glucosemonitoring sensors
-
B. P. Kovatchev et al., "Evaluating the accuracy of continuous glucosemonitoring sensors," Diabetes Care, vol. 27, no. 8, pp. 1922-1928, 2004
-
(2004)
Diabetes Care
, vol.27
, Issue.8
, pp. 1922-1928
-
-
Kovatchev, B.P.1
-
30
-
-
70349240850
-
Statistical tools to analyze continuous glucose monitor data
-
W. Clarke and B. Kovatchev, "Statistical tools to analyze continuous glucose monitor data," Diabetes Technol. Ther., vol. 11, no. S1, pp. S-45-S-54, 2009
-
(2009)
Diabetes Technol. Ther
, vol.11
, Issue.1
, pp. S45-S54
-
-
Clarke, W.1
Kovatchev, B.2
-
31
-
-
77954667874
-
Hypoglycemia prediction with subject-specific recursive time-series models
-
M. Eren-Oruklu et al., "Hypoglycemia prediction with subject-specific recursive time-series models," J. Diabetes Sci. Technol., vol. 4, no. 1, pp. 25-33, 2010
-
(2010)
J. Diabetes Sci. Technol
, vol.4
, Issue.1
, pp. 25-33
-
-
Eren-Oruklu, M.1
-
32
-
-
69949146908
-
In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes
-
B. P. Kovatchev et al., "In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes," J. Diabetes. Sci. Technol., vol. 3, no. 1, pp. 44-55, 2009
-
(2009)
J. Diabetes. Sci. Technol
, vol.3
, Issue.1
, pp. 44-55
-
-
Kovatchev, B.P.1
-
33
-
-
84861394725
-
Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration
-
Jun
-
C. Zecchin et al. "Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration," IEEE Trans. Biomed. Eng., vol. 59, no. 6, pp. 1550-1560, Jun 2012
-
(2012)
IEEE Trans. Biomed. Eng
, vol.59
, Issue.6
, pp. 1550-1560
-
-
Zecchin, C.1
-
34
-
-
77954668157
-
Modeling the error of continuous glucose monitoring sensor data: Critical aspects discussed through simulation studies
-
A. Facchinetti et al., "Modeling the error of continuous glucose monitoring sensor data: Critical aspects discussed through simulation studies," J. Diabetes Sci. Technol., vol. 4, no. 1, pp. 4-14, 2010
-
(2010)
J. Diabetes Sci. Technol
, vol.4
, Issue.1
, pp. 4-14
-
-
Facchinetti, A.1
-
36
-
-
73949126778
-
Analysis, modeling, and simulation of the accuracy of continuous glucose sensors
-
M Breton and B Kovatchev, "Analysis, modeling, and simulation of the accuracy of continuous glucose sensors," J. Diabetes Sci. Technol., vol. 2, no. 5, pp. 853-862, 2008
-
(2008)
J. Diabetes Sci. Technol
, vol.2
, Issue.5
, pp. 853-862
-
-
Breton, M.1
Kovatchev, B.2
-
37
-
-
84896857976
-
Modeling the glucose sensor error
-
Mar
-
A Facchinetti et al., "Modeling the glucose sensor error," IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 620-629, Mar 2014
-
(2014)
IEEE Trans. Biomed. Eng
, vol.61
, Issue.3
, pp. 620-629
-
-
Facchinetti, A.1
-
38
-
-
14844348734
-
The extended Kalman filter for continuous glucose monitoring
-
E. J. Knobbe and B. Buckingham, "The extended Kalman filter for continuous glucose monitoring," Diabetes Technol. Ther., vol. 7, no. 1, pp. 15-27, 2005
-
(2005)
Diabetes Technol. Ther
, vol.7
, Issue.1
, pp. 15-27
-
-
Knobbe, E.J.1
Buckingham, B.2
|