메뉴 건너뛰기




Volumn 62, Issue 5, 2015, Pages 1333-1344

Rapid model identification for online subcutaneous glucose concentration prediction for new subjects with type i diabetes

Author keywords

Auto regressive models with exogenous inputs (ARX); glucose prediction; model migration; rapid model identification; type I diabetes

Indexed keywords

GLUCOSE; SOCIAL NETWORKING (ONLINE); TIME SERIES ANALYSIS;

EID: 84929075114     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2014.2387293     Document Type: Article
Times cited : (34)

References (38)
  • 1
    • 84929110388 scopus 로고    scopus 로고
    • - (2008) [Online]. Available: http://en.wikipedia.org/wiki/Diabetes-mellitus-type-1#cite-note-2
    • (2008)
  • 2
    • 0032773676 scopus 로고    scopus 로고
    • Quality of life and diabetes
    • R. R. Rubin and M. Peyrot, "Quality of life and diabetes," Diabetes/Metab. Res. Rev., vol. 15, no. 3, pp. 205-218, 1999
    • (1999) Diabetes/Metab. Res. Rev , vol.15 , Issue.3 , pp. 205-218
    • Rubin, R.R.1    Peyrot, M.2
  • 3
    • 77950902799 scopus 로고    scopus 로고
    • Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus
    • M. L. Misso et al., "Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus," Cochrane Database. Syst. Rev., vol. 1, pp. 1-94, 2010
    • (2010) Cochrane Database. Syst. Rev , vol.1 , pp. 1-94
    • Misso, M.L.1
  • 4
    • 0032923398 scopus 로고    scopus 로고
    • Effects of meal carbohydrate content on insulin requirements in type 1 diabetic patients treated intensively with the basalbolus (ultralente-regular) insulin regimen
    • R. Rabasa-Lhoret et al., "Effects of meal carbohydrate content on insulin requirements in type 1 diabetic patients treated intensively with the basalbolus (ultralente-regular) insulin regimen," Diabetes Care, vol. 22, no. 5, pp. 667-673, 1999
    • (1999) Diabetes Care , vol.22 , Issue.5 , pp. 667-673
    • Rabasa-Lhoret, R.1
  • 5
    • 84929110389 scopus 로고    scopus 로고
    • - (2013) [Online].Available: http://www.uptodate.com/contents/preventingcomplications-in-diabetes-mellitus-beyond-The-basics
    • (2013)
  • 6
    • 0035514022 scopus 로고    scopus 로고
    • Limitations of conventional methods of self-monitoring of blood glucose: Lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes
    • E. Boland et al., "Limitations of conventional methods of self-monitoring of blood glucose: Lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes," Diabetes Care, vol. 24, no. 11, pp. 1858-1862, 2001
    • (2001) Diabetes Care , vol.24 , Issue.11 , pp. 1858-1862
    • Boland, E.1
  • 7
    • 41749083036 scopus 로고    scopus 로고
    • Use of continuous glucose monitoring to improve diabetes mellitus management
    • S. L. Ellis et al., "Use of continuous glucose monitoring to improve diabetes mellitus management," Endocrin. Metab. Clin., vol. 36, pp. 46-68, 2007
    • (2007) Endocrin. Metab. Clin , vol.36 , pp. 46-68
    • Ellis, S.L.1
  • 8
    • 54849147700 scopus 로고    scopus 로고
    • Continuous glucose monitoring and intensive treatment of type 1 diabete
    • W. V. Tamborlane et al., "Continuous glucose monitoring and intensive treatment of type 1 diabete," N. Engl. J. Med., vol. 359, no. 14, pp. 1464-1476, 2008
    • (2008) N. Engl. J. Med , vol.359 , Issue.14 , pp. 1464-1476
    • Tamborlane, W.V.1
  • 9
    • 0033011704 scopus 로고    scopus 로고
    • Is blood glucose predictable from previous values? A solicitation for data
    • T. Bremer and D. A. Gough, "Is blood glucose predictable from previous values? A solicitation for data," Diabetes, vol. 48, no. 3, pp. 445-451, 1999
    • (1999) Diabetes , vol.48 , Issue.3 , pp. 445-451
    • Bremer, T.1    Gough, D.A.2
  • 10
    • 66649123304 scopus 로고    scopus 로고
    • Effect of input excitation on the quality of empirical dynamic models for type 1 diabetes
    • D. A. Finan et al., "Effect of input excitation on the quality of empirical dynamic models for type 1 diabetes," AIChE J., vol. 55, no. 5, pp. 1135-1146, 2009
    • (2009) AIChE J , vol.55 , Issue.5 , pp. 1135-1146
    • Finan, D.A.1
  • 11
    • 84879700650 scopus 로고    scopus 로고
    • Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus
    • C. H. Zhao et al., "Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus," J. Diabetes Sci. Technol., vol. 6, no. 3, pp. 617-633, 2012
    • (2012) J. Diabetes Sci. Technol , vol.6 , Issue.3 , pp. 617-633
    • Zhao, C.H.1
  • 12
    • 34247372642 scopus 로고    scopus 로고
    • Glucose concentration can be predicted ahead in time from continuous glucosemonitoring sensor time-series
    • May
    • G. Sparacino et al., "Glucose concentration can be predicted ahead in time from continuous glucosemonitoring sensor time-series," IEEE Trans. Biomed. Eng., vol. 54, no. 5, pp. 931-937, May 2007
    • (2007) IEEE Trans. Biomed. Eng , vol.54 , Issue.5 , pp. 931-937
    • Sparacino, G.1
  • 13
    • 54749122334 scopus 로고    scopus 로고
    • Glucose prediction algorithms from continuous monitoring data: Assessment of accuracy via continuous glucose errorgrid analysis
    • F. Zanderigo et al., "Glucose prediction algorithms from continuous monitoring data: Assessment of accuracy via continuous glucose errorgrid analysis," J. Diabetes Sci. Technol., vol. 1, no. 5, pp. 645-651, 2007
    • (2007) J. Diabetes Sci. Technol , vol.1 , Issue.5 , pp. 645-651
    • Zanderigo, F.1
  • 14
    • 84879700650 scopus 로고    scopus 로고
    • Predicting subcutaneous glucose concentration using latent variable (LV)-based statistical analysis method for type 1 diabetes mellitus
    • C. H. Zhao et al., "Predicting subcutaneous glucose concentration using latent variable (LV)-based statistical analysis method for type 1 diabetes mellitus," J. Diabetes Sci. Technol., vol. 6, no. 3, pp. 617-633, 2012
    • (2012) J. Diabetes Sci. Technol , vol.6 , Issue.3 , pp. 617-633
    • Zhao, C.H.1
  • 15
    • 52449101078 scopus 로고    scopus 로고
    • Predictive monitoring for improved management of glucose levels
    • J. Reifman et al., "Predictive monitoring for improved management of glucose levels," J. Diabetes Sci. Technol., vol. 1, no. 4, pp. 478-486, 2007
    • (2007) J. Diabetes Sci. Technol , vol.1 , Issue.4 , pp. 478-486
    • Reifman, J.1
  • 16
    • 84892440430 scopus 로고    scopus 로고
    • Online prediction of subcutaneous glucose concentration for type 1 diabetes using empirical models and frequency-band separation
    • C. H. Zhao et al., "Online prediction of subcutaneous glucose concentration for type 1 diabetes using empirical models and frequency-band separation," AIChE J., vol. 60, no. 2, pp. 574-584, 2014
    • (2014) AIChE J , vol.60 , Issue.2 , pp. 574-584
    • Zhao, C.H.1
  • 17
    • 64349107874 scopus 로고    scopus 로고
    • Estimation of future glucose concentrations with subject-specific recursive linear models
    • M. Eren-Qruklu et al., "Estimation of future glucose concentrations with subject-specific recursive linear models," Diabetes Technol. Ther., vol. 11, no. 4, pp. 243-253, 2009
    • (2009) Diabetes Technol. Ther , vol.11 , Issue.4 , pp. 243-253
    • Eren-Qruklu, M.1
  • 18
    • 63849301691 scopus 로고    scopus 로고
    • Predicting subcutaneous glucose concentration in humans: Data-driven glucose modeling
    • Feb
    • A. Gani et al., "Predicting subcutaneous glucose concentration in humans: Data-driven glucose modeling," IEEE Trans. Biomed. Eng., vol. 56, no. 2, pp. 246-254, Feb. 2009
    • (2009) IEEE Trans. Biomed. Eng , vol.56 , Issue.2 , pp. 246-254
    • Gani, A.1
  • 19
    • 35348855218 scopus 로고    scopus 로고
    • Practical issues in the identification of empirical models from simulated type 1 diabetes data
    • D. A. Finan et al., "Practical issues in the identification of empirical models from simulated type 1 diabetes data," Diabetes Technol. Ther., vol. 9, no. 5, pp. 438-450, 2007
    • (2007) Diabetes Technol. Ther , vol.9 , Issue.5 , pp. 438-450
    • Finan, D.A.1
  • 20
    • 14844365611 scopus 로고    scopus 로고
    • Hypoglycemia prediction and detection using optimal estimation
    • C. C. Palerm et al., "Hypoglycemia prediction and detection using optimal estimation," Diabetes Technol. Ther., vol. 7, no. 1, pp. 3-14, 2005
    • (2005) Diabetes Technol. Ther , vol.7 , Issue.1 , pp. 3-14
    • Palerm, C.C.1
  • 21
    • 84885857641 scopus 로고    scopus 로고
    • Interindividual glucose dynamics in different frequency bands for online prediction of subcutaneous glucose concentration in type 1 diabetic subjects
    • C. H. Zhao et al., "Interindividual glucose dynamics in different frequency bands for online prediction of subcutaneous glucose concentration in type 1 diabetic subjects," AIChE J., vol. 59, no. 11, pp. 4228-4240, 2013
    • (2013) AIChE J , vol.59 , Issue.11 , pp. 4228-4240
    • Zhao, C.H.1
  • 22
    • 75749130634 scopus 로고    scopus 로고
    • Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring
    • C. Perez-Ganda et al., "Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring," Diabetes Tech. Ther., vol. 12, no. 1, pp. 81-88, 2010
    • (2010) Diabetes Tech. Ther , vol.12 , Issue.1 , pp. 81-88
    • Perez-Ganda, C.1
  • 23
    • 79551610188 scopus 로고    scopus 로고
    • Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes
    • S. M. Pappada et al., "Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes," Diabetes Tech. Ther., vol. 13, no. 2, pp. 135-141, 2011
    • (2010) Diabetes Tech. Ther , vol.13 , Issue.2 , pp. 135-141
    • Pappada, S.M.1
  • 24
    • 76849115431 scopus 로고    scopus 로고
    • Universal glucose models for predicting subcutaneous glucose concentration in Humans
    • Jan
    • A. Gani et al., "Universal glucose models for predicting subcutaneous glucose concentration in Humans," IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 1, pp. 157-165, Jan 2010
    • (2010) IEEE Trans. Inf. Technol. Biomed , vol.14 , Issue.1 , pp. 157-165
    • Gani, A.1
  • 26
    • 69049094326 scopus 로고    scopus 로고
    • Process similarity and developing new process models through migration
    • J. D. Lu et al., "Process similarity and developing new process models through migration," AIChE J., vol. 55, no. 9, pp. 2318-2328, 2009
    • (2009) AIChE J , vol.55 , Issue.9 , pp. 2318-2328
    • Lu, J.D.1
  • 28
    • 78049498460 scopus 로고    scopus 로고
    • Zone model predictive control: A strategy to minimize hyper-And hypoglycaemic events
    • B. Grosman et al., "Zone model predictive control: A strategy to minimize hyper-And hypoglycaemic events," J. Diabetes Sci. Technol., vol. 4, no. 4, pp. 961-975, 2010
    • (2010) J. Diabetes Sci. Technol , vol.4 , Issue.4 , pp. 961-975
    • Grosman, B.1
  • 29
    • 3342981187 scopus 로고    scopus 로고
    • Evaluating the accuracy of continuous glucosemonitoring sensors
    • B. P. Kovatchev et al., "Evaluating the accuracy of continuous glucosemonitoring sensors," Diabetes Care, vol. 27, no. 8, pp. 1922-1928, 2004
    • (2004) Diabetes Care , vol.27 , Issue.8 , pp. 1922-1928
    • Kovatchev, B.P.1
  • 30
    • 70349240850 scopus 로고    scopus 로고
    • Statistical tools to analyze continuous glucose monitor data
    • W. Clarke and B. Kovatchev, "Statistical tools to analyze continuous glucose monitor data," Diabetes Technol. Ther., vol. 11, no. S1, pp. S-45-S-54, 2009
    • (2009) Diabetes Technol. Ther , vol.11 , Issue.1 , pp. S45-S54
    • Clarke, W.1    Kovatchev, B.2
  • 31
    • 77954667874 scopus 로고    scopus 로고
    • Hypoglycemia prediction with subject-specific recursive time-series models
    • M. Eren-Oruklu et al., "Hypoglycemia prediction with subject-specific recursive time-series models," J. Diabetes Sci. Technol., vol. 4, no. 1, pp. 25-33, 2010
    • (2010) J. Diabetes Sci. Technol , vol.4 , Issue.1 , pp. 25-33
    • Eren-Oruklu, M.1
  • 32
    • 69949146908 scopus 로고    scopus 로고
    • In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes
    • B. P. Kovatchev et al., "In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes," J. Diabetes. Sci. Technol., vol. 3, no. 1, pp. 44-55, 2009
    • (2009) J. Diabetes. Sci. Technol , vol.3 , Issue.1 , pp. 44-55
    • Kovatchev, B.P.1
  • 33
    • 84861394725 scopus 로고    scopus 로고
    • Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration
    • Jun
    • C. Zecchin et al. "Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration," IEEE Trans. Biomed. Eng., vol. 59, no. 6, pp. 1550-1560, Jun 2012
    • (2012) IEEE Trans. Biomed. Eng , vol.59 , Issue.6 , pp. 1550-1560
    • Zecchin, C.1
  • 34
    • 77954668157 scopus 로고    scopus 로고
    • Modeling the error of continuous glucose monitoring sensor data: Critical aspects discussed through simulation studies
    • A. Facchinetti et al., "Modeling the error of continuous glucose monitoring sensor data: Critical aspects discussed through simulation studies," J. Diabetes Sci. Technol., vol. 4, no. 1, pp. 4-14, 2010
    • (2010) J. Diabetes Sci. Technol , vol.4 , Issue.1 , pp. 4-14
    • Facchinetti, A.1
  • 36
    • 73949126778 scopus 로고    scopus 로고
    • Analysis, modeling, and simulation of the accuracy of continuous glucose sensors
    • M Breton and B Kovatchev, "Analysis, modeling, and simulation of the accuracy of continuous glucose sensors," J. Diabetes Sci. Technol., vol. 2, no. 5, pp. 853-862, 2008
    • (2008) J. Diabetes Sci. Technol , vol.2 , Issue.5 , pp. 853-862
    • Breton, M.1    Kovatchev, B.2
  • 37
    • 84896857976 scopus 로고    scopus 로고
    • Modeling the glucose sensor error
    • Mar
    • A Facchinetti et al., "Modeling the glucose sensor error," IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 620-629, Mar 2014
    • (2014) IEEE Trans. Biomed. Eng , vol.61 , Issue.3 , pp. 620-629
    • Facchinetti, A.1
  • 38
    • 14844348734 scopus 로고    scopus 로고
    • The extended Kalman filter for continuous glucose monitoring
    • E. J. Knobbe and B. Buckingham, "The extended Kalman filter for continuous glucose monitoring," Diabetes Technol. Ther., vol. 7, no. 1, pp. 15-27, 2005
    • (2005) Diabetes Technol. Ther , vol.7 , Issue.1 , pp. 15-27
    • Knobbe, E.J.1    Buckingham, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.