메뉴 건너뛰기




Volumn 6, Issue 3, 2012, Pages 617-633

Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus

Author keywords

Autoregressive model; Autoregressive model with exogenous inputs; Continuous glucose monitoring; Glucose concentration prediction; Latent variable model; Latent variable model with exogenous inputs; Type 1 diabetes mellitus

Indexed keywords

GLUCOSE; ANTIDIABETIC AGENT; INSULIN;

EID: 84879700650     PISSN: None     EISSN: 19322968     Source Type: Journal    
DOI: 10.1177/193229681200600317     Document Type: Article
Times cited : (54)

References (33)
  • 1
  • 2
    • 0032923398 scopus 로고    scopus 로고
    • Effects of meal carbohydrate content on insulin requirements in type 1 diabetic patients treated intensively with the basal-bolus (ultralente-regular) insulin regimen
    • Rabasa-Lhoret R, Garon J, Langelier H, Poisson D, Chiasson JL. Effects of meal carbohydrate content on insulin requirements in type 1 diabetic patients treated intensively with the basal-bolus (ultralente-regular) insulin regimen. Diabetes Care. 1999;22(5):667-73.
    • (1999) Diabetes Care , vol.22 , Issue.5 , pp. 667-673
    • Rabasa-Lhoret, R.1    Garon, J.2    Langelier, H.3    Poisson, D.4    Chiasson, J.L.5
  • 3
    • 0033011704 scopus 로고    scopus 로고
    • Is blood glucose predictable from previous values? A solicitation for data
    • Bremer T, Gough DA. Is blood glucose predictable from previous values? A solicitation for data. Diabetes. 1999;48(3):445-51.
    • (1999) Diabetes , vol.48 , Issue.3 , pp. 445-451
    • Bremer, T.1    Gough, D.A.2
  • 5
    • 34247372642 scopus 로고    scopus 로고
    • Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series
    • Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng. 2007;54(5):931-7.
    • (2007) IEEE Trans Biomed Eng , vol.54 , Issue.5 , pp. 931-937
    • Sparacino, G.1    Zanderigo, F.2    Corazza, S.3    Maran, A.4    Facchinetti, A.5    Cobelli, C.6
  • 6
    • 54749122334 scopus 로고    scopus 로고
    • Glucose prediction algorithms from continuous monitoring data: Assessment of accuracy via continuous glucose error-grid analysis
    • Zanderigo F, Sparacino G, Kovatchev B, Cobelli C. Glucose prediction algorithms from continuous monitoring data: assessment of accuracy via continuous glucose error-grid analysis. J Diabetes Sci Technol. 2007;1(5):645-51.
    • (2007) J Diabetes Sci Technol , vol.1 , Issue.5 , pp. 645-651
    • Zanderigo, F.1    Sparacino, G.2    Kovatchev, B.3    Cobelli, C.4
  • 7
    • 52449101078 scopus 로고    scopus 로고
    • Predictive monitoring for improved management of glucose levels
    • Reifman J, Rajaraman S, Gribok A, Ward WK. Predictive monitoring for improved management of glucose levels. J Diabetes Sci Technol. 2007;1(4):478-86.
    • (2007) J Diabetes Sci Technol , vol.1 , Issue.4 , pp. 478-486
    • Reifman, J.1    Rajaraman, S.2    Gribok, A.3    Ward, W.K.4
  • 8
    • 64349107874 scopus 로고    scopus 로고
    • Estimation of future glucose concentrations with subject-specific recursive linear models
    • Eren-Oruklu M, Cinar A, Quinn L, Smith D. Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol Ther. 2009;11(4):243-53.
    • (2009) Diabetes Technol Ther , vol.11 , Issue.4 , pp. 243-253
    • Eren-Oruklu, M.1    Cinar, A.2    Quinn, L.3    Smith, D.4
  • 9
    • 77954667874 scopus 로고    scopus 로고
    • Hypoglycemia prediction with subject-specific recursive time-series models
    • Eren-Oruklu M, Cinar A, Quinn L. Hypoglycemia prediction with subject-specific recursive time-series models. J Diabetes Sci Technol. 2010;4(1):25-33.
    • (2010) J Diabetes Sci Technol , vol.4 , Issue.1 , pp. 25-33
    • Eren-Oruklu, M.1    Cinar, A.2    Quinn, L.3
  • 10
    • 35348855218 scopus 로고    scopus 로고
    • Practical issues in the identification of empirical models from simulated type 1 diabetes data
    • Finan DA, Zisser H, Jovanovic L, Bevier WC, Seborg DE. Practical issues in the identification of empirical models from simulated type 1 diabetes data. Diabetes Technol Ther. 2007;9(5):438-50.
    • (2007) Diabetes Technol Ther , vol.9 , Issue.5 , pp. 438-450
    • Finan, D.A.1    Zisser, H.2    Jovanovic, L.3    Bevier, W.C.4    Seborg, D.E.5
  • 13
    • 0032078661 scopus 로고    scopus 로고
    • Simulation studies on neural predictive control of glucose using the subcutaneous route
    • Trajanoski Z, Regittnig W, Wach P. Simulation studies on neural predictive control of glucose using the subcutaneous route. Comput Methods Programs Biomed. 1998;56(2):133-9.
    • (1998) Comput Methods Programs Biomed , vol.56 , Issue.2 , pp. 133-139
    • Trajanoski, Z.1    Regittnig, W.2    Wach, P.3
  • 16
    • 33746630272 scopus 로고    scopus 로고
    • Model-based blood glucose control for type 1 diabetes via parametric programming
    • Dua P, Doyle FJ 3rd, Pistikopoulos EN. Model-based blood glucose control for type 1 diabetes via parametric programming. IEEE Trans Biomed Eng. 2006;53(8):1478-91.
    • (2006) IEEE Trans Biomed Eng , vol.53 , Issue.8 , pp. 1478-1491
    • Dua, P.1    Doyle III, F.J.2    Pistikopoulos, E.N.3
  • 17
    • 54749149727 scopus 로고    scopus 로고
    • Hypoglycemia detection and prediction using continuous glucose monitoring - A study on hypoglycemic clamp data
    • Palerm CC, Bequette BW. Hypoglycemia detection and prediction using continuous glucose monitoring-a study on hypoglycemic clamp data. J Diabetes Sci Technol. 2007;1(5):624-9.
    • (2007) J Diabetes Sci Technol , vol.1 , Issue.5 , pp. 624-629
    • Palerm, C.C.1    Bequette, B.W.2
  • 20
    • 77956069628 scopus 로고    scopus 로고
    • Automatic detection of stress states in type 1 diabetes subjects in ambulatory conditions
    • Finan DA, Zisser H, Jovanovič L, Bevier WC, Seborg DE. Automatic detection of stress states in type 1 diabetes subjects in ambulatory conditions. Ind Eng Chem Res. 2010;49(17):7843-8.
    • (2010) Ind Eng Chem Res , vol.49 , Issue.17 , pp. 7843-7848
    • Finan, D.A.1    Zisser, H.2    Jovanovič, L.3    Bevier, W.C.4    Seborg, D.E.5
  • 21
    • 4644367295 scopus 로고    scopus 로고
    • Post processing methods (PLS-CCA): Simple alternatives to preprocessing methods (OSC-PLS)
    • Yu H, MacGregor JF. Post processing methods (PLS-CCA): simple alternatives to preprocessing methods (OSC-PLS). Chemometr Intell Lab Syst. 2004;73:199-205.
    • (2004) Chemometr Intell Lab Syst , vol.73 , pp. 199-205
    • Yu, H.1    MacGregor, J.F.2
  • 22
    • 69949146908 scopus 로고    scopus 로고
    • In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes
    • Kovatchev BP, Breton M, Man CD, Cobelli C. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol. 2009;3(1):44-55.
    • (2009) J Diabetes Sci Technol , vol.3 , Issue.1 , pp. 44-55
    • Kovatchev, B.P.1    Breton, M.2    Man, C.D.3    Cobelli, C.4
  • 23
    • 2842581444 scopus 로고    scopus 로고
    • Frameworks for latent variable multivariate regression
    • Burnham AJ, Viveros R, MacGregor JF. Frameworks for latent variable multivariate regression. J Chemometr. 1996;10(1):31-45.
    • (1996) J Chemometr , vol.10 , Issue.1 , pp. 31-45
    • Burnham, A.J.1    Viveros, R.2    MacGregor, J.F.3
  • 24
    • 0002815256 scopus 로고    scopus 로고
    • Improved PLS algorithms
    • Dayal BS, MacGregor JF. Improved PLS algorithms. J Chemometr. 1997;11(1):73-85.
    • (1997) J Chemometr , vol.11 , Issue.1 , pp. 73-85
    • Dayal, B.S.1    MacGregor, J.F.2
  • 26
    • 0343588896 scopus 로고    scopus 로고
    • Comparison of partial least-square method and canonical correlation analysis in a quantitative structure-retention relationship study
    • Cserháti T, Kósa A, Balogh S. Comparison of partial least-square method and canonical correlation analysis in a quantitative structure-retention relationship study. J Biochem Biophys Methods. 1998;36(2-3):131-41.
    • (1998) J Biochem Biophys Methods , vol.36 , Issue.2-3 , pp. 131-141
    • Cserháti, T.1    Kósa, A.2    Balogh, S.3
  • 27
    • 0036387406 scopus 로고    scopus 로고
    • Canonical correlation analysis and reduced rank regression in autoregressive models
    • Anderson TW. Canonical correlation analysis and reduced rank regression in autoregressive models. Ann Statist. 2002;30(4):1134-54.
    • (2002) Ann Statist , vol.30 , Issue.4 , pp. 1134-1154
    • Anderson, T.W.1
  • 28
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon DR, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 2004;16(12):2639-64.
    • (2004) Neural Comput , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 30
    • 3342981187 scopus 로고    scopus 로고
    • Evaluating the accuracy of continuous glucose-monitoring sensors: Continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data
    • Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL. Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data. Diabetes Care. 2004;27(8):1922-8.
    • (2004) Diabetes Care , vol.27 , Issue.8 , pp. 1922-1928
    • Kovatchev, B.P.1    Gonder-Frederick, L.A.2    Cox, D.J.3    Clarke, W.L.4
  • 31
    • 25644435718 scopus 로고    scopus 로고
    • Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis
    • Clarke WL, Anderson S, Farhy L, Breton M, Gonder-Frederick L, Cox D, Kovatchev B. Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis. Diabetes Care. 2005;28(10):2412-7.
    • (2005) Diabetes Care , vol.28 , Issue.10 , pp. 2412-2417
    • Clarke, W.L.1    Anderson, S.2    Farhy, L.3    Breton, M.4    Gonder-Frederick, L.5    Cox, D.6    Kovatchev, B.7
  • 33
    • 63849301691 scopus 로고    scopus 로고
    • Predicting subcutaneous glucose concentration in humans: Data-driven glucose modeling
    • Gani A, Gribok AV, Rajaraman S, Ward WK, Reifman J. Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans Biomed Eng. 2009;56(2):246-54.
    • (2009) IEEE Trans Biomed Eng , vol.56 , Issue.2 , pp. 246-254
    • Gani, A.1    Gribok, A.V.2    Rajaraman, S.3    Ward, W.K.4    Reifman, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.