메뉴 건너뛰기




Volumn 66, Issue , 2015, Pages 571-598

Plant adaptation to acid soils: The molecular basis for crop aluminum resistance

Author keywords

ALMT; Aluminum exclusion; Aluminum resistance; Aluminum tolerance; MATE; Root organic acid exudation

Indexed keywords

ALUMINUM; SOIL; VEGETABLE PROTEIN;

EID: 84928893389     PISSN: 15435008     EISSN: 15452123     Source Type: Book Series    
DOI: 10.1146/annurev-arplant-043014-114822     Document Type: Article
Times cited : (769)

References (149)
  • 1
    • 0001500490 scopus 로고
    • Genetics of tolerance to aluminum in wheat (Triticum aestivum L Thell)
    • Aniol A. 1990. Genetics of tolerance to aluminum in wheat (Triticum aestivum L. Thell). Plant Soil 123:223-27
    • (1990) Plant Soil , vol.123 , pp. 223-227
    • Aniol, A.1
  • 2
    • 0001101713 scopus 로고
    • Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale
    • Aniol A, Gustafson JP. 1984. Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can. J. Genet. Cytol. 26:701-5
    • (1984) Can. J. Genet. Cytol. , vol.26 , pp. 701-705
    • Aniol, A.1    Gustafson, J.P.2
  • 3
    • 3242715114 scopus 로고    scopus 로고
    • Reactive oxygen species: Metabolism, oxidative stress, and signal transduction
    • Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-99
    • (2004) Annu. Rev. Plant Biol. , vol.55 , pp. 373-399
    • Apel, K.1    Hirt, H.2
  • 4
    • 0036084723 scopus 로고    scopus 로고
    • Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review
    • Barcelo J, Poschenrieder C. 2002. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review. Environ. Exp. Bot. 48:75-92
    • (2002) Environ. Exp. Bot. , vol.48 , pp. 75-92
    • Barcelo, J.1    Poschenrieder, C.2
  • 5
    • 34248598795 scopus 로고    scopus 로고
    • The citric acid cycle
    • New York Freeman. 5th ed
    • Berg JM, Tymoczko JL, Stryer L. 2002. The citric acid cycle. In Biochemistry, pp. 465-87. New York: Freeman. 5th ed.
    • (2002) Biochemistry , pp. 465-487
    • Berg, J.M.1    Tymoczko, J.L.2    Stryer, L.3
  • 6
    • 84899430549 scopus 로고    scopus 로고
    • Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley
    • Cai S, Wu D, Jabeen Z, Huang Y, Huang Y, Zhang G. 2013. Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLOS ONE 8:e69776
    • (2013) PLOS ONE , vol.8 , pp. e69776
    • Cai, S.1    Wu, D.2    Jabeen, Z.3    Huang, Y.4    Huang, Y.5    Zhang, G.6
  • 7
    • 0001945041 scopus 로고
    • Melhoramento do trigo I. Hereditariedade da tolerancia à toxicidade do alumínio
    • CamargoCEO. 1981. Melhoramento do trigo. I. Hereditariedade da tolerancia à toxicidade do alumínio. Bragantia 40:33-45
    • (1981) Bragantia , vol.40 , pp. 33-45
    • Camargoceo1
  • 8
    • 79958774138 scopus 로고    scopus 로고
    • The relationship between population structure and aluminum tolerance in cultivated sorghum
    • Caniato FF, Guimaraes CT, Hamblin M, Billot C, Rami J-F, et al. 2011. The relationship between population structure and aluminum tolerance in cultivated sorghum. PLOS ONE 6:e20830
    • (2011) PLOS ONE , vol.6 , pp. e20830
    • Caniato, F.F.1    Guimaraes, C.T.2    Hamblin, M.3    Billot, C.4    Rami, J.-F.5
  • 10
    • 84900393799 scopus 로고    scopus 로고
    • Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus, AltSB
    • Caniato FF, Hamblin MT, Guimaraes CT, Zhang Z, Schaffert RE, et al. 2014. Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus, AltSB. PLOS ONE 9:e87438
    • (2014) PLOS ONE , vol.9 , pp. e87438
    • Caniato, F.F.1    Hamblin, M.T.2    Guimaraes, C.T.3    Zhang, Z.4    Schaffert, R.E.5
  • 11
    • 0032807968 scopus 로고    scopus 로고
    • Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L ) cells treated with a combination of aluminium and iron
    • Chang YC, Yamamoto Y, Matsumoto H. 1999. Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. Plant Cell Environ. 22:1009-17
    • (1999) Plant Cell Environ. , vol.22 , pp. 1009-1017
    • Chang, Y.C.1    Yamamoto, Y.2    Matsumoto, H.3
  • 12
    • 84884901627 scopus 로고    scopus 로고
    • Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus
    • Chen ZC, Yokosho K, KashinoM, Zhao FJ, Yamaji N, Ma JF. 2013. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus. Plant J. 76:10-23
    • (2013) Plant J. , vol.76 , pp. 10-23
    • Chen, Z.C.1    Yokosho, K.2    Kashino, M.3    Zhao, F.J.4    Yamaji, N.5    Ma, J.F.6
  • 13
    • 52049102715 scopus 로고    scopus 로고
    • An ALMT1 gene cluster controlling aluminium tolerance at the Alt4 locus of rye (Secale cereale L)
    • Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP. 2008. An ALMT1 gene cluster controlling aluminium tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669-82
    • (2008) Genetics , vol.179 , pp. 669-682
    • Collins, N.C.1    Shirley, N.J.2    Saeed, M.3    Pallotta, M.4    Gustafson, J.P.5
  • 14
    • 72449160657 scopus 로고    scopus 로고
    • Diallel analysis and mapping of aluminum tolerance in corn inbred lines
    • Conceiç ão LDHCS, Tessele C, Barbosa Neto JF. 2009. Diallel analysis and mapping of aluminum tolerance in corn inbred lines. Maydica 54:51-64
    • (2009) Maydica , vol.54 , pp. 51-64
    • Conceição, L.D.H.C.S.1    Tessele, C.2    Barbosa Neto, J.F.3
  • 15
    • 84879213392 scopus 로고    scopus 로고
    • Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW
    • Dai J, Bai G, Zhang D, Hong D. 2012. Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Euphytica 192:171-79
    • (2012) Euphytica , vol.192 , pp. 171-179
    • Dai, J.1    Bai, G.2    Zhang, D.3    Hong, D.4
  • 16
    • 84880850002 scopus 로고    scopus 로고
    • The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera
    • De Angeli A, Baetz U, Francisco R, Zhang J, Chaves MM, Regalado A. 2013. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta 238:283-91
    • (2013) Planta , vol.238 , pp. 283-291
    • De Angeli, A.1    Baetz, U.2    Francisco, R.3    Zhang, J.4    Chaves, M.M.5    Regalado, A.6
  • 17
    • 84877764078 scopus 로고    scopus 로고
    • AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis
    • De Angeli A, Zhang J, Meyer S, Martinoia E. 2013. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat. Commun. 4:1804
    • (2013) Nat. Commun. , vol.4 , pp. 1804
    • De Angeli, A.1    Zhang, J.2    Meyer, S.3    Martinoia, E.4
  • 18
    • 0027138037 scopus 로고
    • Aluminum tolerance inwheat (Triticum asetivum L): I. Uptake and distribution of aluminum in root apices
    • Delhaize E, Craig S, BeatonCD,BennetRJ, Jagadish VC,Randall PJ. 1993. Aluminum tolerance inwheat (Triticum asetivum L.): I. Uptake and distribution of aluminum in root apices. Plant Physiol. 103:685-93
    • (1993) Plant Physiol. , vol.103 , pp. 685-693
    • Delhaize, E.1    Craig, S.2    Beaton, C.D.3    Bennet, R.J.4    Jagadish, V.C.5    Randall, P.J.6
  • 19
    • 84861871358 scopus 로고    scopus 로고
    • Transcriptional regulation of aluminium tolerance genes
    • Delhaize E, Ma JF, Ryan PR. 2012. Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci. 17:341-48
    • (2012) Trends Plant Sci. , vol.17 , pp. 341-348
    • Delhaize, E.1    Ma, J.F.2    Ryan, P.R.3
  • 20
    • 6344240350 scopus 로고    scopus 로고
    • Engineering high-level aluminum tolerance in barley with the ALMT1 gene
    • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H. 2004. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. PNAS 101:15249-54
    • (2004) PNAS , vol.101 , pp. 15249-15254
    • Delhaize, E.1    Ryan, P.R.2    Hebb, D.M.3    Yamamoto, Y.4    Sasaki, T.5    Matsumoto, H.6
  • 21
    • 0027131465 scopus 로고
    • Aluminum tolerance in wheat (Triticum aestivum L): II. Aluminum-stimulated excretion of malic acid from root apices
    • Delhaize E, Ryan PR, Randall PJ. 1993. Aluminum tolerance in wheat (Triticum aestivum L.): II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol. 103:695-702
    • (1993) Plant Physiol. , vol.103 , pp. 695-702
    • Delhaize, E.1    Ryan, P.R.2    Randall, P.J.3
  • 22
    • 84889084561 scopus 로고    scopus 로고
    • WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis
    • Ding ZJ, Yan JY, Xu XY, Li GX, Zheng SJ. 2013. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. Plant J. 76:825-35
    • (2013) Plant J. , vol.76 , pp. 825-835
    • Ding, Z.J.1    Yan, J.Y.2    Xu, X.Y.3    Li, G.X.4    Zheng, S.J.5
  • 24
    • 33745268168 scopus 로고    scopus 로고
    • Cell-wall pectin and its degree of methylation in the maize root-apex: Significance for genotypic differences in aluminium resistance
    • EtichaD, Stass A, HorstWJ. 2005. Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance. Plant Cell Environ. 28:1410-20
    • (2005) Plant Cell Environ. , vol.28 , pp. 1410-1420
    • Eticha, D.1    Stass, A.2    Horst, W.J.3
  • 25
    • 77955676297 scopus 로고    scopus 로고
    • Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms
    • Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR, Kochian LV. 2010. Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiol. 153:1678-91
    • (2010) Plant Physiol. , vol.153 , pp. 1678-1691
    • Famoso, A.N.1    Clark, R.T.2    Shaff, J.E.3    Craft, E.4    McCouch, S.R.5    Kochian, L.V.6
  • 26
    • 80052334114 scopus 로고    scopus 로고
    • Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis andQTLmapping
    • Famoso AN, Zhao K, Clark RT, Tung CW,WrightMH, et al. 2011. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis andQTLmapping. PLOS Genet. 7:e1002221
    • (2011) PLOS Genet. , vol.7 , pp. e1002221
    • Famoso, A.N.1    Zhao, K.2    Clark, R.T.3    Tung, C.W.4    Wright, M.H.5
  • 27
    • 84859177998 scopus 로고    scopus 로고
    • Acquisition of aluminium tolerance by modification of a single gene in barley
    • Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, et al. 2012. Acquisition of aluminium tolerance by modification of a single gene in barley. Nat. Commun. 3:713
    • (2012) Nat. Commun. , vol.3 , pp. 713
    • Fujii, M.1    Yokosho, K.2    Yamaji, N.3    Saisho, D.4    Yamane, M.5
  • 28
    • 77957224446 scopus 로고    scopus 로고
    • An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat
    • FuruichiT, SasakiT,Tsuchiya Y, Ryan PR, Delhaize E, Yamamoto Y. 2010. An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat. Plant J. 64:47-55
    • (2010) Plant J. , vol.64 , pp. 47-55
    • Furuichi, T.1    Sasaki, T.2    Tsuchiya, Y.3    Ryan, P.R.4    Delhaize, E.5    Yamamoto, Y.6
  • 30
    • 0142033542 scopus 로고    scopus 로고
    • Role of the genotype in tolerance to acidity and aluminum toxicity
    • ed. Z Rengel. New York Dekker
    • Garvin DF, Carver BF. 2003. Role of the genotype in tolerance to acidity and aluminum toxicity. In Handbook of Soil Acidity, ed. Z Rengel, pp. 387-406. New York: Dekker
    • (2003) Handbook of Soil Acidity , pp. 387-406
    • Garvin, D.F.1    Carver, B.F.2
  • 32
    • 84899480553 scopus 로고    scopus 로고
    • Genetic dissection of Al tolerance QTLs in the maize genome by high density SNP scan
    • Guimaraes CT, Simoes CC, Pastina MM, Maron LG, Magalhaes JV, et al. 2014. Genetic dissection of Al tolerance QTLs in the maize genome by high density SNP scan. BMC Genomics 15:153-67
    • (2014) BMC Genomics , vol.15 , pp. 153-167
    • Guimaraes, C.T.1    Simoes, C.C.2    Pastina, M.M.3    Maron, L.G.4    Magalhaes, J.V.5
  • 34
    • 33745459576 scopus 로고    scopus 로고
    • AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis
    • Hoekenga OA, Maron LG, Piñeros MA, Cançado GM, Shaff J, et al. 2006. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. PNAS 103:9738-43
    • (2006) PNAS , vol.103 , pp. 9738-9743
    • Hoekenga, O.A.1    Maron, L.G.2    Piñeros, M.A.3    Cançado, G.M.4    Shaff, J.5
  • 35
    • 84857640657 scopus 로고    scopus 로고
    • A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice
    • Huang CF, Yamaji N, Chen Z, Ma JF. 2012. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 69:857-67
    • (2012) Plant J. , vol.69 , pp. 857-867
    • Huang, C.F.1    Yamaji, N.2    Chen, Z.3    Ma, J.F.4
  • 36
    • 77955701755 scopus 로고    scopus 로고
    • Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis
    • Huang CF, Yamaji N, Ma JF. 2010. Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol. 153:1669-77
    • (2010) Plant Physiol. , vol.153 , pp. 1669-1677
    • Huang, C.F.1    Yamaji, N.2    Ma, J.F.3
  • 37
    • 64749097256 scopus 로고    scopus 로고
    • A bacterial-type ABC transporter is involved in aluminum tolerance in rice
    • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF. 2009. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655-67
    • (2009) Plant Cell , vol.21 , pp. 655-667
    • Huang, C.F.1    Yamaji, N.2    Mitani, N.3    Yano, M.4    Nagamura, Y.5    Ma, J.F.6
  • 38
    • 67049134315 scopus 로고    scopus 로고
    • Chemical studies on different color development in blue-and red-colored sepal cells of Hydrangea macrophylla
    • Ito D, Shinkai Y, Kato Y, Kondo T, Yoshida K. 2009. Chemical studies on different color development in blue-and red-colored sepal cells of Hydrangea macrophylla. Biosci. Biotechnol. Biochem. 73:1054-59
    • (2009) Biosci. Biotechnol. Biochem. , vol.73 , pp. 1054-1059
    • Ito, D.1    Shinkai, Y.2    Kato, Y.3    Kondo, T.4    Yoshida, K.5
  • 39
    • 34547453356 scopus 로고    scopus 로고
    • Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance
    • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, et al. 2007. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. PNAS 104:9900-5
    • (2007) PNAS , vol.104 , pp. 9900-9905
    • Iuchi, S.1    Koyama, H.2    Iuchi, A.3    Kobayashi, Y.4    Kitabayashi, S.5
  • 40
    • 0031014955 scopus 로고    scopus 로고
    • Expression of aluminum tolerance transferred from Atlas 66 to hard winter wheat
    • Johnson JP, Carver BF, Baligar VC. 1997. Expression of aluminum tolerance transferred from Atlas 66 to hard winter wheat. Crop Sci. 37:103-8
    • (1997) Crop Sci. , vol.37 , pp. 103-108
    • Johnson, J.P.1    Carver, B.F.2    Baligar, V.C.3
  • 41
    • 33744954842 scopus 로고    scopus 로고
    • Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots
    • Jones DL, Blancaflor EB, Kochian LV, Gilroy S. 2006. Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ. 29:1309-18
    • (2006) Plant Cell Environ. , vol.29 , pp. 1309-1318
    • Jones, D.L.1    Blancaflor, E.B.2    Kochian, L.V.3    Gilroy, S.4
  • 42
    • 0032189105 scopus 로고    scopus 로고
    • Effect of aluminum on cytoplasmic Ca2+ homeostasis in root hairs of Arabidopsis thaliana (L)
    • Jones DL, Gilroy S, Larsen PB, Howell SH, Kochian LV. 1998. Effect of aluminum on cytoplasmic Ca2+ homeostasis in root hairs of Arabidopsis thaliana (L.). Planta 206:378-87
    • (1998) Planta , vol.206 , pp. 378-387
    • Jones, D.L.1    Gilroy, S.2    Larsen, P.B.3    Howell, S.H.4    Kochian, L.V.5
  • 43
    • 0031759986 scopus 로고    scopus 로고
    • Aluminum induces a decrease in cytosolic [Ca2+] in BY-2 tobacco cell cultures
    • JonesDL, Kochian LV,Gilroy S. 1998. Aluminum induces a decrease in cytosolic [Ca2+] in BY-2 tobacco cell cultures. Plant Physiol. 116:81-89
    • (1998) Plant Physiol. , vol.116 , pp. 81-89
    • Jones, D.L.1    Kochian, L.V.2    Gilroy, S.3
  • 45
    • 0001469766 scopus 로고
    • Evidence of genetic resistance to aluminum toxicity inwheat (Triticum aestivum Vill, Host)
    • Kerridge PC,KronstadWE. 1968. Evidence of genetic resistance to aluminum toxicity inwheat (Triticum aestivum Vill., Host). Agron. J. 60:710-11
    • (1968) Agron. J. , vol.60 , pp. 710-711
    • Kerridge, P.C.1    Kronstadwe2
  • 46
    • 0034937401 scopus 로고    scopus 로고
    • The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L)
    • Kidd PS, Llugany M, PoschenriederC,Gunse B, Barcelo J. 2001. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52:1339-52
    • (2001) J. Exp. Bot. , vol.52 , pp. 1339-1352
    • Kidd, P.S.1    Llugany, M.2    Poschenrieder, C.3    Gunse, B.4    Barcelo, J.5
  • 47
    • 36248965258 scopus 로고    scopus 로고
    • Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance inArabidopsis
    • Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, et al. 2007. Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance inArabidopsis. Plant Physiol. 145:843-52
    • (2007) Plant Physiol. , vol.145 , pp. 843-852
    • Kobayashi, Y.1    Hoekenga, O.A.2    Itoh, H.3    Nakashima, M.4    Saito, S.5
  • 48
    • 84893151910 scopus 로고    scopus 로고
    • STOP2 activates transcription of several genes for Al-and low pH-tolerance that are regulated by STOP1 in Arabidopsis
    • Kobayashi Y, Ohyama Y, Kobayashi Y, Ito H, Iuchi S, et al. 2014. STOP2 activates transcription of several genes for Al-and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol. Plant 7:311-22
    • (2014) Mol. Plant , vol.7 , pp. 311-322
    • Kobayashi, Y.1    Ohyama, Y.2    Kobayashi, Y.3    Ito, H.4    Iuchi, S.5
  • 49
    • 3242661009 scopus 로고    scopus 로고
    • How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency
    • Kochian LV, Hoekenga OA, Piñeros MA. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55:459-93
    • (2004) Annu. Rev. Plant Biol. , vol.55 , pp. 459-493
    • Kochian, L.V.1    Hoekenga, O.A.2    Piñeros, M.A.3
  • 50
    • 0034965606 scopus 로고    scopus 로고
    • Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex A comparison between an aluminum-sensitive and an aluminum-resistant cultivar
    • Kollmeier M, Dietrich P, BauerCS, HorstWJ, Hedrich R. 2001. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol. 126:397-410
    • (2001) Plant Physiol. , vol.126 , pp. 397-410
    • Kollmeier, M.1    Dietrich, P.2    Bauer, C.S.3    Horst, W.J.4    Hedrich, R.5
  • 52
    • 34247374767 scopus 로고    scopus 로고
    • Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment
    • Larsen PB, Cancel J, Rounds M, Ochoa V. 2007. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225:1447-58
    • (2007) Planta , vol.225 , pp. 1447-1458
    • Larsen, P.B.1    Cancel, J.2    Rounds, M.3    Ochoa, V.4
  • 53
    • 13844261183 scopus 로고    scopus 로고
    • ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis
    • Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD. 2005. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J. 41:353-63
    • (2005) Plant J. , vol.41 , pp. 353-363
    • Larsen, P.B.1    Geisler, M.J.2    Jones, C.A.3    Williams, K.M.4    Cancel, J.D.5
  • 54
    • 84899639942 scopus 로고    scopus 로고
    • Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance
    • Li JY, Liu J, Dong D, Jia X, McCouch SR, Kochian LV. 2014. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. PNAS 111:6503-8
    • (2014) PNAS , vol.111 , pp. 6503-6508
    • Li, J.Y.1    Liu, J.2    Dong, D.3    Jia, X.4    McCouch, S.R.5    Kochian, L.V.6
  • 55
    • 84874640804 scopus 로고    scopus 로고
    • Low pH, aluminum, and phosphorus coordinately regulatemalate exudation through GmALMT1 to improve soybean adaptation to acid soils
    • LiangC, PiñerosMA, Tian J, YaoZ, Sun L, et al. 2013. Low pH, aluminum, and phosphorus coordinately regulatemalate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol. 161:1347-61
    • (2013) Plant Physiol. , vol.161 , pp. 1347-1361
    • Liang, C.1    Piñeros, M.A.2    Tian, J.3    Yao, Z.4    Sun, L.5
  • 56
    • 84889081745 scopus 로고    scopus 로고
    • Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1
    • Ligaba A, Dreyer I, MargaryanA, Schneider DJ, Kochian LV,PiñerosM. 2013. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1. Plant J. 76:766-80
    • (2013) Plant J. , vol.76 , pp. 766-780
    • Ligaba, A.1    Dreyer, I.2    Margaryan, A.3    Schneider, D.J.4    Kochian, L.V.5    Ñerosm, P.6
  • 57
    • 33751078302 scopus 로고    scopus 로고
    • The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells
    • Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H. 2006. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol. 142:1294-303
    • (2006) Plant Physiol. , vol.142 , pp. 1294-1303
    • Ligaba, A.1    Katsuhara, M.2    Ryan, P.R.3    Shibasaka, M.4    Matsumoto, H.5
  • 58
    • 70350784296 scopus 로고    scopus 로고
    • Phosphorylation at S384 regulates the activity of theTaALMT1 malate transporter that underlies aluminum resistance in wheat
    • Ligaba A, Kochian LV, PiñerosM. 2009. Phosphorylation at S384 regulates the activity of theTaALMT1 malate transporter that underlies aluminum resistance in wheat. Plant J. 60:411-23
    • (2009) Plant J. , vol.60 , pp. 411-423
    • Ligaba, A.1    Kochian, L.V.2    Ñerosm, P.3
  • 59
    • 84862115169 scopus 로고    scopus 로고
    • Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux
    • Ligaba A, Maron L, Shaff J, Kochian LV, PiñerosM. 2012. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell Environ. 35:1185-200
    • (2012) Plant Cell Environ. , vol.35 , pp. 1185-1200
    • Ligaba, A.1    Maron, L.2    Shaff, J.3    Kochian, L.V.4    Ñerosm, P.5
  • 60
    • 58849124631 scopus 로고    scopus 로고
    • Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance
    • Liu J, Magalhaes JV, Shaff J, Kochian LV. 2009. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J. 57:389-99
    • (2009) Plant J. , vol.57 , pp. 389-399
    • Liu, J.1    Magalhaes, J.V.2    Shaff, J.3    Kochian, L.V.4
  • 61
    • 0029959232 scopus 로고    scopus 로고
    • Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat
    • Luo MC, Dvorak J. 1996. Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91:31-35
    • (1996) Euphytica , vol.91 , pp. 31-35
    • Luo, M.C.1    Dvorak, J.2
  • 62
    • 0001379687 scopus 로고    scopus 로고
    • Role of organic acids in detoxification of aluminum in higher plants
    • Ma JF. 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol. 41:383-90
    • (2000) Plant Cell Physiol. , vol.41 , pp. 383-390
    • Ma, J.F.1
  • 63
    • 35448962900 scopus 로고    scopus 로고
    • Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants
    • Ma JF. 2007. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int. Rev. Cytol. 264:225-52
    • (2007) Int. Rev. Cytol. , vol.264 , pp. 225-252
    • Ma, J.F.1
  • 64
    • 0033849498 scopus 로고    scopus 로고
    • Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench)
    • Ma JF, Hiradate S. 2000. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355-60
    • (2000) Planta , vol.211 , pp. 355-360
    • Ma, J.F.1    Hiradate, S.2
  • 65
    • 0141599465 scopus 로고    scopus 로고
    • Internal detoxification mechanism of Al in hydrangea: Identification of Al form in the leaves
    • Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H. 1997. Internal detoxification mechanism of Al in hydrangea: identification of Al form in the leaves. Plant Physiol. 113:1033-39
    • (1997) Plant Physiol. , vol.113 , pp. 1033-1039
    • Ma, J.F.1    Hiradate, S.2    Nomoto, K.3    Iwashita, T.4    Matsumoto, H.5
  • 66
    • 25444517039 scopus 로고    scopus 로고
    • Isolation and characterization of a rice mutant hypersensitive to Al
    • Ma JF, Nagao S, Huang CF, NishimuraM. 2005. Isolation and characterization of a rice mutant hypersensitive to Al. Plant Cell Physiol. 46:1054-61
    • (2005) Plant Cell Physiol. , vol.46 , pp. 1054-1061
    • Ma, J.F.1    Nagao, S.2    Huang, C.F.3    Nishimura, M.4
  • 67
    • 0035209879 scopus 로고    scopus 로고
    • Aluminium tolerance in plants and the complexing role of organic acids
    • Ma JF, Ryan PR, Delhaize E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6:273-78
    • (2001) Trends Plant Sci. , vol.6 , pp. 273-278
    • Ma, J.F.1    Ryan, P.R.2    Delhaize, E.3
  • 68
    • 0036594180 scopus 로고    scopus 로고
    • Response of rice to Al stress and identification of quantitative trait loci for Al tolerance
    • Ma JF, Shen R, Zhao Z,Wissuwa M, Takeuchi Y, et al. 2002. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol. 43:652-59
    • (2002) Plant Cell Physiol. , vol.43 , pp. 652-659
    • Ma, J.F.1    Shen, R.2    Zhao, Z.3    Wissuwa, M.4    Takeuchi, Y.5
  • 70
    • 4644260751 scopus 로고    scopus 로고
    • Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae
    • Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, et al. 2004. Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae. Genetics 167:1905-14
    • (2004) Genetics , vol.167 , pp. 1905-1914
    • Magalhaes, J.V.1    Garvin, D.F.2    Wang, Y.3    Sorrells, M.E.4    Klein, P.E.5
  • 71
    • 34548339638 scopus 로고    scopus 로고
    • A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum
    • Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, et al. 2007. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 39:1156-61
    • (2007) Nat. Genet. , vol.39 , pp. 1156-1161
    • Magalhaes, J.V.1    Liu, J.2    Guimaraes, C.T.3    Lana, U.G.P.4    Alves, V.M.C.5
  • 72
    • 0003134704 scopus 로고
    • Inheritance of aluminum tolerance in maize
    • ed. HW Gabelman, BC Loughman. Dordrecht, Neth.Nijhoff
    • Magnavaca R, Gardner CO, Clark RB. 1987. Inheritance of aluminum tolerance in maize. In Genetic Aspects of Mineral Nutrition, ed. HW Gabelman, BC Loughman, pp. 201-12. Dordrecht, Neth.: Nijhoff
    • (1987) Genetic Aspects of Mineral Nutrition , pp. 201-212
    • Magnavaca, R.1    Gardner, C.O.2    Clark, R.B.3
  • 73
    • 84875508685 scopus 로고    scopus 로고
    • Aluminum tolerance in maize is associated with higher MATE1 gene copy number
    • Maron LG, Guimaraes CT, Kirst M, Albert PS, Birchler JA, et al. 2013. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. PNAS 110:5241-46
    • (2013) PNAS , vol.110 , pp. 5241-5246
    • Maron, L.G.1    Guimaraes, C.T.2    Kirst, M.3    Albert, P.S.4    Birchler, J.A.5
  • 74
    • 77950141101 scopus 로고    scopus 로고
    • Twofunctionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize
    • MaronLG, PiñerosMA, GuimaraesCT, Magalhaes JV, Pleiman JK, et al. 2010.Twofunctionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J. 61:728-40
    • (2010) Plant J. , vol.61 , pp. 728-740
    • Maron, L.G.1    Piñeros, M.A.2    Guimaraes, C.T.3    Magalhaes, J.V.4    Pleiman, J.K.5
  • 75
    • 0036943710 scopus 로고    scopus 로고
    • Multifunctionality of plant ABC transporters-more than just detoxifiers
    • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, et al. 2002. Multifunctionality of plant ABC transporters-more than just detoxifiers. Planta 214:345-55
    • (2002) Planta , vol.214 , pp. 345-355
    • Martinoia, E.1    Klein, M.2    Geisler, M.3    Bovet, L.4    Forestier, C.5
  • 76
    • 84898058493 scopus 로고    scopus 로고
    • Physiological andmolecular analysis of aluminum tolerance in selected Kenyan maize lines
    • Matonyei TK,Cheprot RK, Liu J, PiñerosMA, Shaff JE, et al. 2014. Physiological andmolecular analysis of aluminum tolerance in selected Kenyan maize lines. Plant Soil 377:357-67
    • (2014) Plant Soil , vol.377 , pp. 357-367
    • Matonyei, T.K.1    Cheprot, R.K.2    Liu, J.3    Piñeros, M.A.4    Shaff, J.E.5
  • 77
    • 84872498928 scopus 로고    scopus 로고
    • Incomplete transfer of accessory loci influencing SbMATE expression underlies genetic background effects for aluminum tolerance in sorghum
    • Melo JO, Lana UGP, PiñerosMA, Alves VMC, GuimaraesCT, et al. 2013. Incomplete transfer of accessory loci influencing SbMATE expression underlies genetic background effects for aluminum tolerance in sorghum. Plant J. 73:276-88
    • (2013) Plant J. , vol.73 , pp. 276-288
    • Melo, J.O.1    Lana, U.G.P.2    Piñeros, M.A.3    Alves, V.M.C.4
  • 79
    • 77956836038 scopus 로고    scopus 로고
    • AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells
    • Meyer S, Mumm P, Imes D, Endler A, Weder B, et al. 2010. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J. 63:1054-62
    • (2010) Plant J. , vol.63 , pp. 1054-1062
    • Meyer, S.1    Mumm, P.2    Imes, D.3    Endler, A.4    Weder, B.5
  • 80
    • 79960249424 scopus 로고    scopus 로고
    • Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation
    • Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, et al. 2011. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J. 67:247-57
    • (2011) Plant J. , vol.67 , pp. 247-257
    • Meyer, S.1    Scholz-Starke, J.2    De Angeli, A.3    Kovermann, P.4    Burla, B.5
  • 81
    • 0000684424 scopus 로고
    • Aluminum tolerance in barley: Genetic relationships among genotypes of diverse origin
    • Minella E, Sorrells ME. 1992. Aluminum tolerance in barley: genetic relationships among genotypes of diverse origin. Crop Sci. 32:593-98
    • (1992) Crop Sci. , vol.32 , pp. 593-598
    • Minella, E.1    Sorrells, M.E.2
  • 82
    • 12044255239 scopus 로고
    • Mechanism of aluminum tolerance in snapbeans: Root exudation of citric acid
    • Miyasaka SC, Buta JG, Howell RK, Foy CD. 1991. Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol. 96:737-43
    • (1991) Plant Physiol. , vol.96 , pp. 737-743
    • Miyasaka, S.C.1    Buta, J.G.2    Howell, R.K.3    Foy, C.D.4
  • 83
  • 84
    • 84876689424 scopus 로고    scopus 로고
    • C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1
    • Mumm P, Imes D, Martinoia E, Al-Rasheid KAS, Geiger D, et al. 2013. C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1. Mol. Plant 6:1550-63
    • (2013) Mol. Plant , vol.6 , pp. 1550-1563
    • Mumm, P.1    Imes, D.2    Martinoia, E.3    Al-Rasheid, K.A.S.4    Geiger, D.5
  • 85
    • 84865589088 scopus 로고    scopus 로고
    • Tonoplast-and plasma membranelocalized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant
    • Negishi T, Oshima K, Hattori M, Kanai M, Mano S, et al. 2012. Tonoplast-and plasma membranelocalized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLOS ONE 7:e43189
    • (2012) PLOS ONE , vol.7 , pp. e43189
    • Negishi, T.1    Oshima, K.2    Hattori, M.3    Kanai, M.4    Mano, S.5
  • 86
    • 84876973066 scopus 로고    scopus 로고
    • Plasma membrane-localized Al-transporter from blue hydrangea sepals is a member of the anion permease family
    • Negishi T, Oshima K, Hattori M, Yoshida K. 2013. Plasma membrane-localized Al-transporter from blue hydrangea sepals is a member of the anion permease family. Genes Cells 18:341-52
    • (2013) Genes Cells , vol.18 , pp. 341-352
    • Negishi, T.1    Oshima, K.2    Hattori, M.3    Yoshida, K.4
  • 87
    • 0037854790 scopus 로고    scopus 로고
    • Identification and mapping of theQTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff, into indica rice (Oryza sativa L.)
    • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT. 2003. Identification and mapping of theQTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor. Appl. Genet. 106:583-93
    • (2003) Theor. Appl. Genet. , vol.106 , pp. 583-593
    • Nguyen, B.D.1    Brar, D.S.2    Bui, B.C.3    Nguyen, T.V.4    Pham, L.N.5    Nguyen, H.T.6
  • 89
    • 78650986877 scopus 로고    scopus 로고
    • Transient proliferation of proanthocyanidinaccumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree
    • Osawa H, Endo I, Hara Y, Matsushima Y, Tange T. 2011. Transient proliferation of proanthocyanidinaccumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree. Plant Physiol. 155:433-46
    • (2011) Plant Physiol. , vol.155 , pp. 433-446
    • Osawa, H.1    Endo, I.2    Hara, Y.3    Matsushima, Y.4    Tange, T.5
  • 90
    • 0034978310 scopus 로고    scopus 로고
    • Possible involvement of protein phosphorylation in aluminiumresponsive malate efflux from wheat root apex
    • Osawa H, Matsumoto H. 2001. Possible involvement of protein phosphorylation in aluminiumresponsive malate efflux from wheat root apex. Plant Physiol. 126:411-20
    • (2001) Plant Physiol. , vol.126 , pp. 411-420
    • Osawa, H.1    Matsumoto, H.2
  • 92
    • 0028833084 scopus 로고
    • Organic-acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L)
    • Pellet DM, Grunes DL, Kochian LV. 1995. Organic-acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788-95
    • (1995) Planta , vol.196 , pp. 788-795
    • Pellet, D.M.1    Grunes, D.L.2    Kochian, L.V.3
  • 93
  • 94
    • 51749103887 scopus 로고    scopus 로고
    • Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: Functional and structural implications
    • Piñeros MA, Cançado GM, Kochian LV. 2008. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: functional and structural implications. Plant Physiol. 147:2131-46
    • (2008) Plant Physiol. , vol.147 , pp. 2131-2146
    • Piñeros, M.A.1    Cançado, G.M.2    Kochian, L.V.3
  • 95
    • 37749035651 scopus 로고    scopus 로고
    • Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: The case of ZmALMT1-an anionselective transporter
    • Piñeros MA, Cançado GM, Maron LG, Lyi SM, Menossi M, Kochian LV. 2008. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1-an anionselective transporter. Plant J. 53:352-67
    • (2008) Plant J. , vol.53 , pp. 352-367
    • Piñeros, M.A.1    Cançado, G.M.2    Maron, L.G.3    Lyi, S.M.4    Menossi, M.5    Kochian, L.V.6
  • 96
    • 84928882791 scopus 로고    scopus 로고
    • A CBL5/CIPK2 calcium sensor/protein kinase complex modulates the transport activity of MATE-type transporters involved in the key plant aluminum resistance mechanism mediated by root organic acid release
    • 16th, Okayama, Jpn., Mar.
    • Piñeros MA, Fich E, Offenborn JN, Mähs A, Kudla J, Kochian LV. 2013. A CBL5/CIPK2 calcium sensor/protein kinase complex modulates the transport activity of MATE-type transporters involved in the key plant aluminum resistance mechanism mediated by root organic acid release. Presented at Int. Workshop Plant Membr. Biol., 16th, Okayama, Jpn., Mar. 26-31
    • (2013) Presented at Int. Workshop Plant Membr. Biol. , pp. 26-31
    • Piñeros, M.A.1    Fich, E.2    Offenborn, J.N.3    Mähs, A.4    Kudla, J.5    Kochian, L.V.6
  • 97
    • 0035143906 scopus 로고    scopus 로고
    • A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels
    • Piñeros MA, Kochian LV. 2001. A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiol. 125:292-305
    • (2001) Plant Physiol. , vol.125 , pp. 292-305
    • PiñEros, M.A.1    Kochian, L.V.2
  • 98
    • 0035983936 scopus 로고    scopus 로고
    • The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize
    • Piñeros MA, Magalhaes JV, Alves VMC, Kochian LV. 2002. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol. 129:1194-206
    • (2002) Plant Physiol. , vol.129 , pp. 1194-1206
    • Piñeros, M.A.1    Magalhaes, J.V.2    Alves, V.M.C.3    Kochian, L.V.4
  • 99
    • 17144388617 scopus 로고    scopus 로고
    • Aluminum resistance in maize cannot be solely explained by root organic acid exudation A comparative physiological study
    • Piñeros MA, Shaff JE, Manslank HS, Alves VMC, Kochian LV. 2005. Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol. 137:231-41
    • (2005) Plant Physiol. , vol.137 , pp. 231-241
    • Piñeros, M.A.1    Shaff, J.E.2    Manslank, H.S.3    Alves, V.M.C.4    Kochian, L.V.5
  • 100
    • 78149429364 scopus 로고    scopus 로고
    • Genome-wide association analyses of common wheat (Triticum aestivum L ) germplasm identifies multiple loci for aluminium resistance
    • Raman H, Stodart B, Ryan PR, Delhaize E, Emebiri L, et al. 2010. Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53:957-66
    • (2010) Genome , vol.53 , pp. 957-966
    • Raman, H.1    Stodart, B.2    Ryan, P.R.3    Delhaize, E.4    Emebiri, L.5
  • 101
    • 84989040283 scopus 로고
    • Disturbance of Ca2+ homeostasis as a primary trigger in the Al toxicity syndrome
    • Rengel Z. 1992. Disturbance of Ca2+ homeostasis as a primary trigger in the Al toxicity syndrome. Plant Cell Environ. 15:931-38
    • (1992) Plant Cell Environ. , vol.15 , pp. 931-938
    • Rengel, Z.1
  • 102
    • 0042463698 scopus 로고    scopus 로고
    • Role of dynamics of intracellular calcium in aluminium-toxicity syndrome
    • Rengel Z, ZhangW-H. 2003. Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol. 159:295-314
    • (2003) New Phytol. , vol.159 , pp. 295-314
    • Rengel, Z.1    Zhang, W.-H.2
  • 103
    • 0029854234 scopus 로고    scopus 로고
    • Linkage of RFLP markers to an aluminum tolerance gene in wheat
    • Riede CR, Anderson JA. 1996. Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci. 36:905-9
    • (1996) Crop Sci. , vol.36 , pp. 905-909
    • Riede, C.R.1    Anderson, J.A.2
  • 104
    • 0034756769 scopus 로고    scopus 로고
    • Genetic and physical characterization of chromosome 4DL in wheat
    • Rodriguez Milla MA, Gustafson JP. 2001. Genetic and physical characterization of chromosome 4DL in wheat. Genome. Genome 44:883-92
    • (2001) Genome. Genome , vol.44 , pp. 883-892
    • Rodriguez Milla, M.A.1    Gustafson, J.P.2
  • 105
    • 84890173018 scopus 로고    scopus 로고
    • Plant adaptations to aluminium toxicity
    • ed. S Shabala. Wallingford, UK CABI
    • Ryan PR, Delhaize E. 2012. Plant adaptations to aluminium toxicity. In Plant Stress Physiology, ed. S Shabala, pp. 171-93. Wallingford, UK: CABI
    • (2012) Plant Stress Physiology , pp. 171-193
    • Ryan, P.R.1    Delhaize, E.2
  • 107
    • 0028852798 scopus 로고
    • Malate efflux from root apices and tolerance aluminum are highly correlated in wheat
    • Ryan PR, Delhaize E, Randall PJ. 1995. Malate efflux from root apices and tolerance aluminum are highly correlated in wheat. Aust. J. Plant Physiol. 22:531-36
    • (1995) Aust. J. Plant Physiol. , vol.22 , pp. 531-536
    • Ryan, P.R.1    Delhaize, E.2    Randall, P.J.3
  • 108
    • 2142845717 scopus 로고
    • Aluminum toxicity in roots: An investigation of spatial sensitivity and the role of the root cap
    • Ryan PR, DiTomaso JM, Kochian LV. 1993. Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J. Exp. Bot. 44:437-46
    • (1993) J. Exp. Bot. , vol.44 , pp. 437-446
    • Ryan, P.R.1    Ditomaso, J.M.2    Kochian, L.V.3
  • 109
    • 58449101064 scopus 로고    scopus 로고
    • A secondmechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots
    • Ryan PR,Raman H, Gupta S,Horst WJ,Delhaize E. 2009. A secondmechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol. 149:340-51
    • (2009) Plant Physiol. , vol.149 , pp. 340-351
    • Ryan, P.R.1    Raman, H.2    Gupta, S.3    Horst, W.J.4    Delhaize, E.5
  • 110
    • 78149423704 scopus 로고    scopus 로고
    • The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii andmore recent cis mutations toTaALMT1
    • Ryan PR, Raman H, Gupta S, Sasaki T, Yamamoto Y, Delhaize E. 2010. The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii andmore recent cis mutations toTaALMT1. Plant J. 64:446-55
    • (2010) Plant J. , vol.64 , pp. 446-455
    • Ryan, P.R.1    Raman, H.2    Gupta, S.3    Sasaki, T.4    Yamamoto, Y.5    Delhaize, E.6
  • 111
    • 0030925240 scopus 로고    scopus 로고
    • Aluminum activates an anion channel in the apical cells of wheat roots
    • Ryan PR, Skerrett M, Findlay GP, Delhaize E, Tyerman SD. 1997. Aluminum activates an anion channel in the apical cells of wheat roots. PNAS 94:6547-52
    • (1997) PNAS , vol.94 , pp. 6547-6552
    • Ryan, P.R.1    Skerrett, M.2    Findlay, G.P.3    Delhaize, E.4    Tyerman, S.D.5
  • 112
    • 78649881326 scopus 로고    scopus 로고
    • Identification of aluminium-resistance genes in plants provides an opportunity for enhancing the acid-soil tolerance of crop species
    • Ryan PR, Tyerman SD, Sasaki T, Yamamoto Y, Zhang WH, Delhaize E. 2011. Identification of aluminium-resistance genes in plants provides an opportunity for enhancing the acid-soil tolerance of crop species. J. Exp. Bot. 62:9-20
    • (2011) J. Exp. Bot. , vol.62 , pp. 9-20
    • Ryan, P.R.1    Tyerman, S.D.2    Sasaki, T.3    Yamamoto, Y.4    Zhang, W.H.5    Delhaize, E.6
  • 113
    • 77949416372 scopus 로고    scopus 로고
    • Closing plant stomata requires a homolog of an aluminum-activated malate transporter
    • Sasaki T, Mori IC, Furuichi T, Munemasa S, Toyooka K, et al. 2010. Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol. 51:354-65
    • (2010) Plant Cell Physiol. , vol.51 , pp. 354-365
    • Sasaki, T.1    Mori, I.C.2    Furuichi, T.3    Munemasa, S.4    Toyooka, K.5
  • 114
    • 1542318969 scopus 로고    scopus 로고
    • A wheat gene encoding an aluminum-activated malate transporter
    • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, et al. 2004. A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37:645-53
    • (2004) Plant J. , vol.37 , pp. 645-653
    • Sasaki, T.1    Yamamoto, Y.2    Ezaki, B.3    Katsuhara, M.4    Ahn, S.J.5
  • 115
    • 84857425782 scopus 로고    scopus 로고
    • Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses
    • Sasidharan R, Voesenek LACJ, PierikR. 2011. Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit. Rev. Plant Sci. 30:548-62
    • (2011) Crit. Rev. Plant Sci. , vol.30 , pp. 548-562
    • Sasidharan, R.1    Voesenek, L.A.C.J.2    Pierik, R.3
  • 116
    • 66149095025 scopus 로고    scopus 로고
    • STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities
    • Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, et al. 2009. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol. 150:281-94
    • (2009) Plant Physiol. , vol.150 , pp. 281-294
    • Sawaki, Y.1    Iuchi, S.2    Kobayashi, Y.3    Kobayashi, Y.4    Ikka, T.5
  • 117
    • 0033890838 scopus 로고    scopus 로고
    • Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum
    • Schmohl N, Pilling J, Fisahn J, Horst WJ. 2000. Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol. Plant. 109:419-27
    • (2000) Physiol. Plant. , vol.109 , pp. 419-427
    • Schmohl, N.1    Pilling, J.2    Fisahn, J.3    Horst, W.J.4
  • 118
    • 0036945202 scopus 로고    scopus 로고
    • Compartmentation of aluminium in leaves of an Alaccumulator, Fagopyrum esculentum Moench
    • Shen RF, Ma JF, Kyo M, Iwashita T. 2002. Compartmentation of aluminium in leaves of an Alaccumulator, Fagopyrum esculentum Moench. Planta 215:394-98
    • (2002) Planta , vol.215 , pp. 394-398
    • Shen, R.F.1    Ma, J.F.2    Kyo, M.3    Iwashita, T.4
  • 119
    • 0033150252 scopus 로고    scopus 로고
    • Two genes controlling aluminum tolerance in maize: Genetic and molecular mapping analyses
    • Sibov ST, Gaspar MJ, Ottoboni LMM, Arruda P, Souza AP. 1999. Two genes controlling aluminum tolerance in maize: genetic and molecular mapping analyses. Genome 42:475-82
    • (1999) Genome , vol.42 , pp. 475-482
    • Sibov, S.T.1    Gaspar, M.J.2    Ottoboni, L.M.M.3    Arruda, P.4    Souza, A.P.5
  • 120
    • 0031759563 scopus 로고    scopus 로고
    • The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize
    • SivaguruM, Horst W. 1998. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol. 116:155-63
    • (1998) Plant Physiol. , vol.116 , pp. 155-163
    • Sivaguru, M.1    Horst, W.2
  • 121
    • 84885324546 scopus 로고    scopus 로고
    • Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance
    • Sivaguru M, Liu J, Kochian LV. 2013. Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant J. 76:297-307
    • (2013) Plant J. , vol.76 , pp. 297-307
    • Sivaguru, M.1    Liu, J.2    Kochian, L.V.3
  • 122
    • 84893502969 scopus 로고    scopus 로고
    • Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis
    • Tahara K, Hashida K,Otsuka Y,Ohara S, Kojima K, Shinohara K. 2014. Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis. Plant Physiol. 164:683-93
    • (2014) Plant Physiol. , vol.164 , pp. 683-693
    • Tahara, K.1    Hashida, K.2    Otsuka, Y.3    Ohara, S.4    Kojima, K.5    Shinohara, K.6
  • 123
    • 0036712314 scopus 로고    scopus 로고
    • Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66
    • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF. 2002. Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci. 42:1541-46
    • (2002) Crop Sci. , vol.42 , pp. 1541-1546
    • Tang, Y.1    Garvin, D.F.2    Kochian, L.V.3    Sorrells, M.E.4    Carver, B.F.5
  • 124
    • 70350002139 scopus 로고    scopus 로고
    • Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance
    • Tolrà R, Barcelo J, Poschenrieder C. 2009. Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance. J. Inorg. Biochem. 103:1486-90
    • (2009) J. Inorg. Biochem. , vol.103 , pp. 1486-1490
    • Tolrà, R.1    Barcelo, J.2    Poschenrieder, C.3
  • 125
    • 84873258995 scopus 로고    scopus 로고
    • Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices
    • Tovkach A, Ryan PR, Richardson AE, Lewis DC, Rathjen TM, et al. 2013. Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiol. 161:880-92
    • (2013) Plant Physiol. , vol.161 , pp. 880-892
    • Tovkach, A.1    Ryan, P.R.2    Richardson, A.E.3    Lewis, D.C.4    Rathjen, T.M.5
  • 126
    • 79958073333 scopus 로고    scopus 로고
    • Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice
    • Tsutsui T, Yamaji N, Feng Ma J. 2011. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol. 156:925-31
    • (2011) Plant Physiol. , vol.156 , pp. 925-931
    • Tsutsui, T.1    Yamaji, N.2    Feng Ma, J.3
  • 127
    • 0029546097 scopus 로고
    • Global extent, development and economic-impact of acid soils
    • von Uexküll HR, Mutert E. 1995. Global extent, development and economic-impact of acid soils. Plant Soil 171:1-15
    • (1995) Plant Soil , vol.171 , pp. 1-15
    • Von Uexküll, H.R.1    Mutert, E.2
  • 128
    • 41549112367 scopus 로고    scopus 로고
    • Mapping subsoil acidity and shallow soil across a field with information from yield maps, geophysical sensing and the grower
    • Wong MTF, Asseng S, Robertson MJ, Oliver Y. 2008. Mapping subsoil acidity and shallow soil across a field with information from yield maps, geophysical sensing and the grower. Precis. Agric. 9:3-5
    • (2008) Precis. Agric. , vol.9 , pp. 3-5
    • Wong, M.T.F.1    Asseng, S.2    Robertson, M.J.3    Oliver, Y.4
  • 130
    • 0033934694 scopus 로고    scopus 로고
    • QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages
    • Wu P, Liao CY, Hu B, Yi KK, JinWZ, et al. 2000. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet. 100:1295-303
    • (2000) Theor. Appl. Genet. , vol.100 , pp. 1295-1303
    • Wu, P.1    Liao, C.Y.2    Hu, B.3    Yi, K.K.4    Jin, W.Z.5
  • 131
    • 84905179175 scopus 로고    scopus 로고
    • Differential expression of Nrat1 is responsible for Al-tolerance QTL on chromosome 2 in rice
    • Xia J, Yamaji N, Che J, Shen RF, Ma JF. 2014. Differential expression of Nrat1 is responsible for Al-tolerance QTL on chromosome 2 in rice. J. Exp. Bot. 65:4297-304
    • (2014) J. Exp. Bot. , vol.65 , pp. 4297-4304
    • Xia, J.1    Yamaji, N.2    Che, J.3    Shen, R.F.4    Ma, J.F.5
  • 132
    • 78649900250 scopus 로고    scopus 로고
    • Plasma membrane-localized transporter for aluminum in rice
    • Xia J, Yamaji N, Kasai T, Ma JF. 2010. Plasma membrane-localized transporter for aluminum in rice. PNAS 107:18381-85
    • (2010) PNAS , vol.107 , pp. 18381-18385
    • Xia, J.1    Yamaji, N.2    Kasai, T.3    Ma, J.F.4
  • 133
    • 79956190644 scopus 로고    scopus 로고
    • Further characterization of an aluminum influx transporter in rice
    • Xia J, Yamaji N, Ma JF. 2011. Further characterization of an aluminum influx transporter in rice. Plant Signal. Behav. 6:160-63
    • (2011) Plant Signal. Behav. , vol.6 , pp. 160-163
    • Xia, J.1    Yamaji, N.2    Ma, J.F.3
  • 134
    • 84885311667 scopus 로고    scopus 로고
    • A plasma membrane-localized small peptide is involved in rice aluminum tolerance
    • Xia J, Yamaji N, Ma JF. 2013. A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Plant J. 76:345-55
    • (2013) Plant J. , vol.76 , pp. 345-355
    • Xia, J.1    Yamaji, N.2    Ma, J.F.3
  • 135
    • 72049129125 scopus 로고    scopus 로고
    • A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice
    • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, et al. 2009. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339-49
    • (2009) Plant Cell , vol.21 , pp. 3339-3349
    • Yamaji, N.1    Huang, C.F.2    Nagao, S.3    Yano, M.4    Sato, Y.5
  • 137
    • 38949152438 scopus 로고    scopus 로고
    • Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex
    • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, et al. 2008. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol. 146:602-11
    • (2008) Plant Physiol. , vol.146 , pp. 602-611
    • Yang, J.L.1    Li, Y.Y.2    Zhang, Y.J.3    Zhang, S.S.4    Wu, Y.R.5
  • 138
    • 79953709712 scopus 로고    scopus 로고
    • Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis
    • Yang JL,Zhu XF, PengYX, ZhengC,LiGX, et al. 2011. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol. 155:1885-92
    • (2011) Plant Physiol. , vol.155 , pp. 1885-1892
    • Yang, J.L.1    Zhu, X.F.2    Peng, Y.X.3    Zheng, C.4    Li, G.X.5
  • 139
    • 80855130516 scopus 로고    scopus 로고
    • A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex
    • Yang XY, Yang JL, Piñeros MA, Kochian LV, Li GX, Zheng SJ. 2011. A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant Cell Environ. 34:2138-48
    • (2011) Plant Cell Environ. , vol.34 , pp. 2138-2148
    • Yang, X.Y.1    Yang, J.L.2    Piñeros, M.A.3    Kochian, L.V.4    Li, G.X.5    Zheng, S.J.6
  • 140
    • 84880324331 scopus 로고    scopus 로고
    • Association of specific pectinmethylesterases with Al-induced root elongation inhibition in rice
    • Yang XY, Zeng ZH, Yan JY, FanW, Bian HW, et al. 2013. Association of specific pectinmethylesterases with Al-induced root elongation inhibition in rice. Physiol. Plant. 148:502-11
    • (2013) Physiol. Plant. , vol.148 , pp. 502-511
    • Yang, X.Y.1    Zeng, Z.H.2    Yan, J.Y.3    Fan, W.4    Bian, H.W.5
  • 141
    • 77950243428 scopus 로고    scopus 로고
    • Isolation and characterisation of two MATE genes in rye
    • Yokosho K, Yamaji N, Ma JF. 2010. Isolation and characterisation of two MATE genes in rye. Funct. Plant Biol. 37:296-303
    • (2010) Funct. Plant Biol. , vol.37 , pp. 296-303
    • Yokosho, K.1    Yamaji, N.2    Ma, J.F.3
  • 142
    • 83555161640 scopus 로고    scopus 로고
    • An Al-inducible MATE gene is involved in external detoxification of Al in rice
    • Yokosho K, Yamaji N, Ma JF. 2011. An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J. 68:1061-69
    • (2011) Plant J. , vol.68 , pp. 1061-1069
    • Yokosho, K.1    Yamaji, N.2    Ma, J.F.3
  • 143
    • 51749100258 scopus 로고    scopus 로고
    • Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L) cells
    • ZhangWH, Ryan PR, Sasaki T, Yamamoto Y, Sullivan W, Tyerman SD. 2008. Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Plant Cell Physiol. 49:1316-30
    • (2008) Plant Cell Physiol. , vol.49 , pp. 1316-1330
    • Zhang, W.H.1    Ryan, P.R.2    Sasaki, T.3    Yamamoto, Y.4    Sullivan, W.5    Tyerman, S.D.6
  • 144
    • 0035099628 scopus 로고    scopus 로고
    • Malate-permeable channels and cation channels activated by aluminium in the apical cells of wheat roots
    • Zhang WH, Ryan PR, Tyerman SD. 2001. Malate-permeable channels and cation channels activated by aluminium in the apical cells of wheat roots. Plant Physiol. 125:1459-72
    • (2001) Plant Physiol. , vol.125 , pp. 1459-1472
    • Zhang, W.H.1    Ryan, P.R.2    Tyerman, S.D.3
  • 145
    • 0011201091 scopus 로고    scopus 로고
    • Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress
    • Zheng SJ, Ma JF, Matsumoto H. 1998. Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress. Physiol. Plant. 103:209-14
    • (1998) Physiol. Plant. , vol.103 , pp. 209-214
    • Zheng, S.J.1    Ma, J.F.2    Matsumoto, H.3
  • 146
    • 14944373281 scopus 로고    scopus 로고
    • High aluminum resistance in buckwheat: I Al-induced specific secretion of oxalic acid from root tips
    • Zheng SJ, Ma JF, Matsumoto H. 1998. High aluminum resistance in buckwheat: I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol. 117:745-51
    • (1998) Plant Physiol. , vol.117 , pp. 745-751
    • Zheng, S.J.1    Ma, J.F.2    Matsumoto, H.3
  • 147
    • 84871889975 scopus 로고    scopus 로고
    • XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis
    • Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, et al. 2012. XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. Plant Cell 24:4731-47
    • (2012) Plant Cell , vol.24 , pp. 4731-4747
    • Zhu, X.F.1    Shi, Y.Z.2    Lei, G.J.3    Fry, S.C.4    Zhang, B.C.5
  • 148
    • 84907052883 scopus 로고    scopus 로고
    • TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis
    • Zhu XF, Sun Y, Zhang BC,Mansoori N,Wan JX, et al. 2014. TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis. Plant Physiol. 166:181-89
    • (2014) Plant Physiol. , vol.166 , pp. 181-189
    • Zhu, X.F.1    Sun, Y.2    Zhang, B.C.3    Mansoori, N.4    Wan, J.X.5
  • 149
    • 84905284814 scopus 로고    scopus 로고
    • Xyloglucan Endotransglucosylase-Hydrolase17 interacts withXyloglucan Endotransglucosylase-Hydrolase31 to confer xyloglucan endotransglucosylase action and affect aluminum sensitivity in Arabidopsis
    • Zhu XF, Wan JX, Sun Y, Shi YZ, Braam J, et al. 2014. Xyloglucan Endotransglucosylase-Hydrolase17 interacts withXyloglucan Endotransglucosylase-Hydrolase31 to confer xyloglucan endotransglucosylase action and affect aluminum sensitivity in Arabidopsis. Plant Physiol. 165:1566-74
    • (2014) Plant Physiol. , vol.165 , pp. 1566-1574
    • Zhu, X.F.1    Wan, J.X.2    Sun, Y.3    Shi, Y.Z.4    Braam, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.