메뉴 건너뛰기




Volumn 17, Issue 6, 2012, Pages 341-348

Transcriptional regulation of aluminium tolerance genes

Author keywords

[No Author keywords available]

Indexed keywords

ALUMINUM;

EID: 84861871358     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2012.02.008     Document Type: Review
Times cited : (229)

References (74)
  • 1
    • 3242661009 scopus 로고    scopus 로고
    • How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency
    • Kochian L.V., et al. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 2004, 55:459-493.
    • (2004) Annu. Rev. Plant Biol. , vol.55 , pp. 459-493
    • Kochian, L.V.1
  • 2
    • 35248821744 scopus 로고    scopus 로고
    • Strategies of plants to adapt to mineral stresses in problem soils
    • Hiradate S., et al. Strategies of plants to adapt to mineral stresses in problem soils. Adv. Agron. 2007, 96:65-132.
    • (2007) Adv. Agron. , vol.96 , pp. 65-132
    • Hiradate, S.1
  • 3
    • 0002282929 scopus 로고
    • Current views of the aluminum stress response: the physiological basis of tolerance
    • Taylor G.J. Current views of the aluminum stress response: the physiological basis of tolerance. Curr. Top. Plant Biochem. Physiol. 1991, 10:57-93.
    • (1991) Curr. Top. Plant Biochem. Physiol. , vol.10 , pp. 57-93
    • Taylor, G.J.1
  • 4
    • 1542318969 scopus 로고    scopus 로고
    • A wheat gene encoding an aluminum-activated malate transporter
    • Sasaki T., et al. A wheat gene encoding an aluminum-activated malate transporter. Plant J. 2004, 37:645-653.
    • (2004) Plant J. , vol.37 , pp. 645-653
    • Sasaki, T.1
  • 5
    • 34548048392 scopus 로고    scopus 로고
    • An aluminum-activated citrate transporter in barley
    • Furukawa J., et al. An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 2007, 48:1081-1091.
    • (2007) Plant Cell Physiol. , vol.48 , pp. 1081-1091
    • Furukawa, J.1
  • 6
    • 34548339638 scopus 로고    scopus 로고
    • A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum
    • Magalhaes J.V., et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 2007, 39:1156-1161.
    • (2007) Nat. Genet. , vol.39 , pp. 1156-1161
    • Magalhaes, J.V.1
  • 7
    • 0029854234 scopus 로고    scopus 로고
    • Linkage of RFLP markers to an aluminum tolerance gene in wheat
    • Riede C.R., Anderson J.A. Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci. 1996, 36:905-909.
    • (1996) Crop Sci. , vol.36 , pp. 905-909
    • Riede, C.R.1    Anderson, J.A.2
  • 8
    • 20444366222 scopus 로고    scopus 로고
    • Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1)
    • Yamaguchi M., et al. Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol. 2005, 46:812-816.
    • (2005) Plant Cell Physiol. , vol.46 , pp. 812-816
    • Yamaguchi, M.1
  • 9
    • 6344240350 scopus 로고    scopus 로고
    • Engineering high-level aluminum tolerance in barley with the ALMT1 gene
    • Delhaize E., et al. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc. Nat. Acad. Sci. U.S.A. 2004, 101:15249-15254.
    • (2004) Proc. Nat. Acad. Sci. U.S.A. , vol.101 , pp. 15249-15254
    • Delhaize, E.1
  • 10
    • 51749100258 scopus 로고    scopus 로고
    • 3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells
    • 3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Plant Cell Physiol. 2008, 49:1316-1330.
    • (2008) Plant Cell Physiol. , vol.49 , pp. 1316-1330
    • Zhang, W.1
  • 11
    • 77956391918 scopus 로고    scopus 로고
    • Engineering greater aluminium resistance in wheat by over-expressing TaALMT1
    • Pereira J.F., et al. Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann. Bot. 2010, 106:205-214.
    • (2010) Ann. Bot. , vol.106 , pp. 205-214
    • Pereira, J.F.1
  • 12
    • 34248206152 scopus 로고    scopus 로고
    • The roles of organic anion permeases in aluminium resistance and mineral nutrition
    • Delhaize E., et al. The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett. 2007, 581:2255-2262.
    • (2007) FEBS Lett. , vol.581 , pp. 2255-2262
    • Delhaize, E.1
  • 13
    • 33745459576 scopus 로고    scopus 로고
    • AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis
    • Hoekenga O.A., et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Nat. Acad. Sci. U.S.A. 2006, 103:9738-9743.
    • (2006) Proc. Nat. Acad. Sci. U.S.A. , vol.103 , pp. 9738-9743
    • Hoekenga, O.A.1
  • 14
    • 52049102715 scopus 로고    scopus 로고
    • An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.)
    • Collins N.C., et al. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 2008, 179:669-682.
    • (2008) Genetics , vol.179 , pp. 669-682
    • Collins, N.C.1
  • 15
    • 33751078302 scopus 로고    scopus 로고
    • The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells
    • Ligaba A., et al. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol. 2006, 142:1294-1303.
    • (2006) Plant Physiol. , vol.142 , pp. 1294-1303
    • Ligaba, A.1
  • 16
    • 77949416372 scopus 로고    scopus 로고
    • Closing plant stomata requires a homolog of an aluminum-activated malate transporter
    • Sasaki T., et al. Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol. 2010, 51:354-365.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 354-365
    • Sasaki, T.1
  • 17
    • 77956836038 scopus 로고    scopus 로고
    • AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells
    • Meyer S., et al. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J. 2010, 63:1054-1062.
    • (2010) Plant J. , vol.63 , pp. 1054-1062
    • Meyer, S.1
  • 18
    • 79960249424 scopus 로고    scopus 로고
    • Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation
    • Meyer S., et al. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J. 2011, 67:247-257.
    • (2011) Plant J. , vol.67 , pp. 247-257
    • Meyer, S.1
  • 19
    • 77949392862 scopus 로고    scopus 로고
    • HvALMT1 from barley is involved in the transport of organic anions
    • Gruber B.D., et al. HvALMT1 from barley is involved in the transport of organic anions. J. Exp. Bot. 2010, 61:1455-1467.
    • (2010) J. Exp. Bot. , vol.61 , pp. 1455-1467
    • Gruber, B.D.1
  • 20
    • 36849063163 scopus 로고    scopus 로고
    • The Arabidopsis vacuolar malate channel is a member of the ALMT family
    • Kovermann P., et al. The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J. 2007, 52:1169-1180.
    • (2007) Plant J. , vol.52 , pp. 1169-1180
    • Kovermann, P.1
  • 21
    • 4644260751 scopus 로고    scopus 로고
    • Comparative mapping of a major aluminum tolerance gene in Sorghum and other species in the Poaceae
    • Magalhaes J.V., et al. Comparative mapping of a major aluminum tolerance gene in Sorghum and other species in the Poaceae. Genetics 2004, 167:1905-1914.
    • (2004) Genetics , vol.167 , pp. 1905-1914
    • Magalhaes, J.V.1
  • 22
    • 0034124135 scopus 로고    scopus 로고
    • Identification of RFLP markers linked to the barley aluminum tolerance gene Alp
    • Tang Y., et al. Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci. 2000, 40:778-782.
    • (2000) Crop Sci. , vol.40 , pp. 778-782
    • Tang, Y.1
  • 23
    • 34347331248 scopus 로고    scopus 로고
    • High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.)
    • Wang J.P., et al. High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theoret. Appl. Genet. 2007, 115:265-276.
    • (2007) Theoret. Appl. Genet. , vol.115 , pp. 265-276
    • Wang, J.P.1
  • 24
    • 77956352624 scopus 로고    scopus 로고
    • How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family
    • Magalhaes J.V. How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. Ann. Bot. 2010, 106:199-203.
    • (2010) Ann. Bot. , vol.106 , pp. 199-203
    • Magalhaes, J.V.1
  • 25
    • 0037337313 scopus 로고    scopus 로고
    • The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily
    • Hvorup R.N., et al. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur. J. Biochem. 2003, 270:799-813.
    • (2003) Eur. J. Biochem. , vol.270 , pp. 799-813
    • Hvorup, R.N.1
  • 26
    • 34248185333 scopus 로고    scopus 로고
    • The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation
    • Durrett T.P., et al. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 2007, 144:197-205.
    • (2007) Plant Physiol. , vol.144 , pp. 197-205
    • Durrett, T.P.1
  • 27
    • 58449101064 scopus 로고    scopus 로고
    • A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots
    • Ryan P.R., et al. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol. 2009, 149:340-351.
    • (2009) Plant Physiol. , vol.149 , pp. 340-351
    • Ryan, P.R.1
  • 28
    • 77950141101 scopus 로고    scopus 로고
    • Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize
    • Maron L.G., et al. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J. 2010, 61:728-740.
    • (2010) Plant J. , vol.61 , pp. 728-740
    • Maron, L.G.1
  • 29
    • 77950243428 scopus 로고    scopus 로고
    • Isolation and characterisation of two MATE genes in rye
    • Yokosho K., et al. Isolation and characterisation of two MATE genes in rye. Funct. Plant Biol. 2010, 37:296-303.
    • (2010) Funct. Plant Biol. , vol.37 , pp. 296-303
    • Yokosho, K.1
  • 30
    • 58849124631 scopus 로고    scopus 로고
    • Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance
    • Liu J.P., et al. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J. 2009, 57:389-399.
    • (2009) Plant J. , vol.57 , pp. 389-399
    • Liu, J.P.1
  • 31
    • 83555161640 scopus 로고    scopus 로고
    • An Al-inducible MATE gene is involved in external detoxification of Al in rice
    • Yokosho K., et al. An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J. 2011, 68:1061-1069.
    • (2011) Plant J. , vol.68 , pp. 1061-1069
    • Yokosho, K.1
  • 32
    • 80855130516 scopus 로고    scopus 로고
    • A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex
    • Yang X.Y., et al. A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant Cell Environ. 2011, 34:2138-2148.
    • (2011) Plant Cell Environ. , vol.34 , pp. 2138-2148
    • Yang, X.Y.1
  • 33
    • 77953836503 scopus 로고    scopus 로고
    • Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes
    • Eticha D., et al. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann. Bot. 2010, 105:1119-1128.
    • (2010) Ann. Bot. , vol.105 , pp. 1119-1128
    • Eticha, D.1
  • 34
    • 77950236896 scopus 로고    scopus 로고
    • The convergent evolution of aluminium resistance in plants exploits a convenient currency
    • Ryan P.R., Delhaize E. The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct. Plant Biol. 2010, 37:275-284.
    • (2010) Funct. Plant Biol. , vol.37 , pp. 275-284
    • Ryan, P.R.1    Delhaize, E.2
  • 35
    • 78649881326 scopus 로고    scopus 로고
    • The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils
    • Ryan P.R., et al. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J. Exp. Bot. 2011, 62:9-20.
    • (2011) J. Exp. Bot. , vol.62 , pp. 9-20
    • Ryan, P.R.1
  • 36
    • 70350784296 scopus 로고    scopus 로고
    • Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat
    • Ligaba A., et al. Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. Plant J. 2009, 60:411-423.
    • (2009) Plant J. , vol.60 , pp. 411-423
    • Ligaba, A.1
  • 37
    • 77957224446 scopus 로고    scopus 로고
    • An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat
    • Furuichi T., et al. An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat. Plant J. 2010, 64:47-55.
    • (2010) Plant J. , vol.64 , pp. 47-55
    • Furuichi, T.1
  • 38
    • 31744442455 scopus 로고    scopus 로고
    • Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.)
    • Raman H., et al. Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 2005, 48:781-791.
    • (2005) Genome , vol.48 , pp. 781-791
    • Raman, H.1
  • 39
    • 78149423704 scopus 로고    scopus 로고
    • The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1
    • Ryan P.R., et al. The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J. 2010, 64:446-455.
    • (2010) Plant J. , vol.64 , pp. 446-455
    • Ryan, P.R.1
  • 40
    • 33750591499 scopus 로고    scopus 로고
    • Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance
    • Sasaki T., et al. Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol. 2006, 47:1343-1354.
    • (2006) Plant Cell Physiol. , vol.47 , pp. 1343-1354
    • Sasaki, T.1
  • 41
    • 38349169606 scopus 로고    scopus 로고
    • Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.)
    • Raman H., et al. Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theoret. App. Genet. 2008, 116:343-354.
    • (2008) Theoret. App. Genet. , vol.116 , pp. 343-354
    • Raman, H.1
  • 42
    • 33847320129 scopus 로고    scopus 로고
    • Transposable elements and the plant pan-genomes
    • Morgante M., et al. Transposable elements and the plant pan-genomes. Curr. Opin. Plant Biol. 2007, 10:149-155.
    • (2007) Curr. Opin. Plant Biol. , vol.10 , pp. 149-155
    • Morgante, M.1
  • 43
    • 84859177998 scopus 로고    scopus 로고
    • Acquisition of aluminium tolerance by modification of a single gene in barley
    • Fujii M., et al. Acquisition of aluminium tolerance by modification of a single gene in barley. Nat. Commun. 2012, 3:713.
    • (2012) Nat. Commun. , vol.3 , pp. 713
    • Fujii, M.1
  • 44
    • 0033845758 scopus 로고    scopus 로고
    • Pattern of Al-induced secretion of organic acids differs between rye and wheat
    • Li X.F., et al. Pattern of Al-induced secretion of organic acids differs between rye and wheat. Plant Physiol. 2000, 123:1537-1543.
    • (2000) Plant Physiol. , vol.123 , pp. 1537-1543
    • Li, X.F.1
  • 45
    • 54949132122 scopus 로고    scopus 로고
    • The significance of organic-anion exudation for the aluminum resistance of primary triticale derived from wheat and rye parents differing in aluminum resistance
    • Stass A., et al. The significance of organic-anion exudation for the aluminum resistance of primary triticale derived from wheat and rye parents differing in aluminum resistance. J. Plant Nut. Soil Sci. 2008, 171:634-642.
    • (2008) J. Plant Nut. Soil Sci. , vol.171 , pp. 634-642
    • Stass, A.1
  • 46
    • 62949083449 scopus 로고    scopus 로고
    • Microarray analysis of Arabidopsis genome response to aluminum stress
    • Goodwin S.B., Sutter T.R. Microarray analysis of Arabidopsis genome response to aluminum stress. Biol. Plantarum 2009, 53:85-99.
    • (2009) Biol. Plantarum , vol.53 , pp. 85-99
    • Goodwin, S.B.1    Sutter, T.R.2
  • 47
    • 52649110232 scopus 로고    scopus 로고
    • Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines
    • Houde M., Diallo A.O. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 2008, 9:400.
    • (2008) BMC Genomics , vol.9 , pp. 400
    • Houde, M.1    Diallo, A.O.2
  • 48
    • 44149090495 scopus 로고    scopus 로고
    • Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula
    • Chandran D., et al. Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 2008, 228:151-166.
    • (2008) Planta , vol.228 , pp. 151-166
    • Chandran, D.1
  • 49
    • 44649172645 scopus 로고    scopus 로고
    • Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots
    • Maron L.G., et al. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol. 2008, 179:116-128.
    • (2008) New Phytol. , vol.179 , pp. 116-128
    • Maron, L.G.1
  • 50
    • 33845881704 scopus 로고    scopus 로고
    • Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress
    • Guo P., et al. Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol. Genet. Genomics 2007, 277:1-12.
    • (2007) Mol. Genet. Genomics , vol.277 , pp. 1-12
    • Guo, P.1
  • 51
    • 34547453356 scopus 로고    scopus 로고
    • Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance
    • Iuchi S., et al. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:9900-9905.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 9900-9905
    • Iuchi, S.1
  • 52
    • 72049129125 scopus 로고    scopus 로고
    • A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice
    • Yamaji N., et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 2009, 21:3339-3349.
    • (2009) Plant Cell , vol.21 , pp. 3339-3349
    • Yamaji, N.1
  • 53
    • 66149095025 scopus 로고    scopus 로고
    • STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities
    • Sawaki Y., et al. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol. 2009, 150:281-294.
    • (2009) Plant Physiol. , vol.150 , pp. 281-294
    • Sawaki, Y.1
  • 54
    • 13844261183 scopus 로고    scopus 로고
    • ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis
    • Larsen P.B., et al. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J. 2005, 41:353-363.
    • (2005) Plant J. , vol.41 , pp. 353-363
    • Larsen, P.B.1
  • 55
    • 36248965258 scopus 로고    scopus 로고
    • Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis
    • Kobayashi Y., et al. Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol. 2007, 145:843-852.
    • (2007) Plant Physiol. , vol.145 , pp. 843-852
    • Kobayashi, Y.1
  • 56
    • 42249105245 scopus 로고    scopus 로고
    • STOP1, a Cys2/His2 type zinc-finger protein, plays critical role in acid soil tolerance in Arabidopsis
    • Iuchi S., et al. STOP1, a Cys2/His2 type zinc-finger protein, plays critical role in acid soil tolerance in Arabidopsis. Plant Signal. Behav. 2008, 3:128-130.
    • (2008) Plant Signal. Behav. , vol.3 , pp. 128-130
    • Iuchi, S.1
  • 57
    • 0038796837 scopus 로고    scopus 로고
    • Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait
    • Hoekenga O.A., et al. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol. 2003, 132:936-948.
    • (2003) Plant Physiol. , vol.132 , pp. 936-948
    • Hoekenga, O.A.1
  • 58
    • 0036954633 scopus 로고    scopus 로고
    • QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana
    • Kobayashi Y., Koyama H. QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana. Plant Cell Physiol. 2002, 43:1526-1533.
    • (2002) Plant Cell Physiol. , vol.43 , pp. 1526-1533
    • Kobayashi, Y.1    Koyama, H.2
  • 59
    • 34548164043 scopus 로고    scopus 로고
    • Natural variation of Arabidopsis thaliana reveals that aluminum resistance and proton resistance are controlled by different genetic factors
    • Ikka T., et al. Natural variation of Arabidopsis thaliana reveals that aluminum resistance and proton resistance are controlled by different genetic factors. Theoret. Appl. Genet. 2007, 115:709-719.
    • (2007) Theoret. Appl. Genet. , vol.115 , pp. 709-719
    • Ikka, T.1
  • 60
    • 34247374767 scopus 로고    scopus 로고
    • Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment
    • Larsen P.B., et al. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 2007, 225:1447-1458.
    • (2007) Planta , vol.225 , pp. 1447-1458
    • Larsen, P.B.1
  • 61
    • 77955701755 scopus 로고    scopus 로고
    • Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis
    • Huang C.-F., et al. Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol. 2010, 153:1669-1677.
    • (2010) Plant Physiol. , vol.153 , pp. 1669-1677
    • Huang, C.-F.1
  • 62
    • 77955676297 scopus 로고    scopus 로고
    • Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms
    • Famoso A.N., et al. Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiol. 2010, 153:1678-1691.
    • (2010) Plant Physiol. , vol.153 , pp. 1678-1691
    • Famoso, A.N.1
  • 63
    • 80052334114 scopus 로고    scopus 로고
    • Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping
    • Famoso A.N., et al. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet. 2011, 7:e1002221.
    • (2011) PLoS Genet. , vol.7
    • Famoso, A.N.1
  • 64
    • 79958073333 scopus 로고    scopus 로고
    • Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice
    • Tsutsui T., et al. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol. 2011, 156:925-931.
    • (2011) Plant Physiol. , vol.156 , pp. 925-931
    • Tsutsui, T.1
  • 65
    • 0036594180 scopus 로고    scopus 로고
    • Response of rice to Al stress and identification of quantitative trait loci for Al tolerance
    • Ma J.F., et al. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol. 2002, 43:652-659.
    • (2002) Plant Cell Physiol. , vol.43 , pp. 652-659
    • Ma, J.F.1
  • 66
    • 64749097256 scopus 로고    scopus 로고
    • A bacterial-type ABC transporter is involved in aluminum tolerance in rice
    • Huang C.F., et al. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 2009, 21:655-667.
    • (2009) Plant Cell , vol.21 , pp. 655-667
    • Huang, C.F.1
  • 67
    • 79953132500 scopus 로고    scopus 로고
    • Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants
    • Nozoye T., et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem. 2011, 286:5446-5454.
    • (2011) J. Biol. Chem. , vol.286 , pp. 5446-5454
    • Nozoye, T.1
  • 68
    • 78649900250 scopus 로고    scopus 로고
    • Plasma membrane-localized transporter for aluminum in rice
    • Xia J., et al. Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18381-18385.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 18381-18385
    • Xia, J.1
  • 69
    • 77954156302 scopus 로고    scopus 로고
    • The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review
    • Horst W.J., et al. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann. Bot. 2010, 106:185-197.
    • (2010) Ann. Bot. , vol.106 , pp. 185-197
    • Horst, W.J.1
  • 70
    • 84857640657 scopus 로고    scopus 로고
    • A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice
    • Huang C.F., et al. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 2012, 69:857-867.
    • (2012) Plant J. , vol.69 , pp. 857-867
    • Huang, C.F.1
  • 71
    • 0035209879 scopus 로고    scopus 로고
    • Aluminium tolerance in plants and the complexing role of organic acids
    • Ma J.F., et al. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 2001, 6:273-278.
    • (2001) Trends Plant Sci. , vol.6 , pp. 273-278
    • Ma, J.F.1
  • 72
    • 65549099626 scopus 로고    scopus 로고
    • Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil
    • Delhaize E., et al. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotech. J. 2009, 7:391-400.
    • (2009) Plant Biotech. J. , vol.7 , pp. 391-400
    • Delhaize, E.1
  • 73
    • 84855763553 scopus 로고    scopus 로고
    • Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants
    • Metali F., et al. Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants. New Phytol. 2011, 193:637-649.
    • (2011) New Phytol. , vol.193 , pp. 637-649
    • Metali, F.1
  • 74
    • 0035781897 scopus 로고    scopus 로고
    • Function and mechanism of organic anion exudation from plant roots
    • Ryan P.R., et al. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52:527-560.
    • (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol. , vol.52 , pp. 527-560
    • Ryan, P.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.